ZHCSP66A october 2021 – april 2023 LMK1D1212 , LMK1D1216
PRODUCTION DATA
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
POWER SUPPLY CHARACTERISTICS | ||||||
IDDSTAT | Core supply current, static (LMK1D1212) | All outputs enabled and unterminated, f = 0 Hz | 65 | mA | ||
IDDSTAT | Core supply current, static (LMK1D1216) | All outputs enabled and unterminated, f = 0 Hz | 70 | mA | ||
IDD100M | Core supply current (LMK1D1212) | All outputs enabled, RL = 100 Ω, f =100 MHz | 105 | 130 | mA | |
IDD100M | Core supply current (LMK1D1216) | All outputs enabled, RL = 100 Ω, f =100 MHz | 120 | 150 | mA | |
IN_SEL/AMP_SEL CONTROL INPUT CHARACTERISTICS (Applies to VDD = 1.8 V ± 5%, 2.5 V ± 5% and 3.3 V ± 5%) | ||||||
VdI3 | Tri-state input | Open | 0.4 × VCC | V | ||
VIH | Input high voltage | Minimum input voltage for a logical "1" state in table 1 | 0.7 × VCC | VCC + 0.3 | V | |
VIL | Input low voltage | Maximum input voltage for a logical "0" state in table 1 | –0.3 | 0.3 × VCC | V | |
IIH | Input high current | VDD can be 1.8V, 2.5V, or 3.3V with VIH = VDD | 30 | µA | ||
IIL | Input low current | VDD can be 1.8V, 2.5V, or 3.3V with VIH = VDD | –30 | µA | ||
Rpull-up | Input pullup resistor | 500 | kΩ | |||
Rpull-down | Input pulldown resistor | 320 | kΩ | |||
SINGLE-ENDED LVCMOS/LVTTL CLOCK INPUT (Applies to VDD = 1.8 V ± 5%, 2.5 V ± 5% and 3.3 V ± 5%) | ||||||
fIN | Input frequency | Clock input | DC | 250 | MHz | |
VIN_S-E | Single-ended Input Voltage Swing | Assumes a square wave input with two levels | 0.4 | 3.465 | V | |
dVIN/dt | Input Slew Rate (20% to 80% of the amplitude) | 0.05 | V/ns | |||
IIH | Input high current | VDD = 3.465 V, VIH = 3.465 V | 60 | µA | ||
IIL | Input low current | VDD = 3.465 V, VIL = 0 V | –30 | µA | ||
CIN_SE | Input capacitance | at 25°C | 3.5 | pF | ||
DIFFERENTIAL CLOCK INPUT (Applies to VDD = 1.8 V ± 5%, 2.5 V ± 5% and 3.3 V ± 5%) | ||||||
fIN | Input frequency | Clock input | 2 | GHz | ||
VIN,DIFF(p-p) | Differential input voltage peak-to-peak {2 × (VINP – VINN)} | VICM = 1 V (VDD = 1.8 V) | 0.3 | 2.4 | VPP | |
VICM = 1.25 V (VDD = 2.5 V/3.3 V) | 0.3 | 2.4 | ||||
VICM | Input common-mode voltage | VIN,DIFF(P-P) > 0.4 V (VDD = 1.8 V/2.5 V/3.3 V) | 0.25 | 2.3 | V | |
IIH | Input high current | VDD = 3.465 V, VINP = 2.4 V, VINN = 1.2 V | 30 | µA | ||
IIL | Input low current | VDD = 3.465 V, VINP = 0 V, VINN = 1.2 V | –30 | µA | ||
CIN_SE | Input capacitance (Single-ended) | at 25°C | 3.5 | pF | ||
LVDS DC OUTPUT CHARACTERISTICS | ||||||
|VOD| | Differential output voltage magnitude |VOUTP - VOUTN| | VIN,DIFF(P-P) = 0.3 V, RLOAD = 100 Ω | 250 | 350 | 450 | mV |
|VOD| | Differential output voltage magnitude |VOUTP - VOUTN| | VIN,DIFF(P-P) = 0.3 V, RLOAD = 100 Ω, AMP_SEL = 1 | 400 | 500 | 650 | mV |
ΔVOD | Change in differential output voltage magnitude | VIN,DIFF(P-P) = 0.3 V, RLOAD = 100 Ω | –15 | 15 | mV | |
ΔVOD | Change in differential output voltage magnitude | VIN,DIFF(P-P) = 0.3 V, RLOAD = 100 Ω, AMP_SEL = 1 | –20 | 20 | mV | |
VOC(SS) | Steady-state, common-mode output voltage | VIN,DIFF(P-P) = 0.3 V, RLOAD = 100 Ω (VDD = 1.8 V) | 1 | 1.2 | V | |
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100 Ω (VDD = 2.5 V/3.3 V) | 1.1 | 1.375 | ||||
VOC(SS) | Steady-state, common-mode output voltage | VIN,DIFF(P-P) = 0.3 V, RLOAD = 100 Ω (VDD = 1.8 V), AMP_SEL = 1 | 0.8 | 1.05 | V | |
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100 Ω (VDD = 2.5 V/3.3 V), AMP_SEL = 1 | 0.9 | 1.15 | ||||
ΔVOC(SS) | Change in steady-state, common-mode output voltage | VIN,DIFF(P-P) = 0.3 V, RLOAD = 100 Ω | –15 | 15 | mV | |
ΔVOC(SS) | Change in steady-state, common-mode output voltage | VIN,DIFF(P-P) = 0.3 V, RLOAD = 100 Ω, AMP_SEL = 1 | –20 | 20 | mV | |
LVDS AC OUTPUT CHARACTERISTICS | ||||||
Vring | Output overshoot and undershoot | VIN,DIFF(P-P) = 0.3 V, RLOAD = 100 Ω, fOUT = 491.52 MHz | –0.1 | 0.1 | VOD | |
VOS | Output AC common-mode voltage | VIN,DIFF(P-P) = 0.3 V, RLOAD = 100 Ω | 50 | 100 | mVpp | |
VOS | Output AC common-mode voltage | VIN,DIFF(P-P) = 0.3 V, RLOAD = 100 Ω, AMP_SEL = 1 | 75 | 150 | mVpp | |
IOS | Short-circuit output current (differential) | VOUTP = VOUTN | –12 | 12 | mA | |
IOS(cm) | Short-circuit output current (common-mode) | VOUTP = VOUTN = 0 | –24 | 24 | mA | |
tPD | Propagation delay | VIN,DIFF(P-P) = 0.3 V, RLOAD = 100 Ω (1) | 0.3 | 0.575 | ns | |
tSK, O | Output skew | Skew between outputs with the same load conditions (12 and 16 channels) (2) | 20 | ps | ||
tSK, PP | Part-to-part skew | Skew between outputs on different parts subjected to the same operating conditions with the same input and output loading. | 200 | ps | ||
tSK, P | Pulse skew | 50% duty cycle input, crossing point-to-crossing-point distortion (3) | –20 | 20 | ps | |
tRJIT(ADD) | Random additive Jitter (rms) | fIN = 156.25 MHz with 50% duty-cycle, Input slew rate = 1.5V/ns, Integration range = 12 kHz to 20 MHz, with output load RLOAD = 100 Ω | 45 | 60 | fs, RMS | |
Phase noise | Phase Noise for a carrier frequency of 156.25 MHz with 50% duty-cycle, Input slew rate = 1.5V/ns with output load RLOAD = 100 Ω | PN1kHz | –143 | dBc/Hz | ||
PN10kHz | –150 | |||||
PN100kHz | –157 | |||||
PN1MHz | –160 | |||||
PNfloor | –164 | |||||
MUXISO | Mux Isolation | fIN = 156.25 MHz. The difference in power level at fIN when the selected clock is active and the unselected clock is static versus when the selected clock is inactive and the unselected clock is active. | 80 | dB | ||
ODC | Output duty cycle | With 50% duty cycle input | 45 | 55 | % | |
tR/tF | Output rise and fall time | 20% to 80% with RLOAD = 100 Ω | 300 | ps | ||
tR/tF | Output rise and fall time | 20% to 80% with RLOAD = 100 Ω (AMP_SEL= 1) | 300 | ps | ||
VAC_REF | Reference output voltage | VDD = 2.5 V, ILOAD = 100 μA | 0.9 | 1.25 | 1.375 | V |
POWER SUPPLY NOISE REJECTION (PSNR) VDD = 2.5 V/ 3.3 V | ||||||
PSNR | Power Supply Noise Rejection (fcarrier = 156.25 MHz) | 10 kHz, 100 mVpp ripple injected on VDD | –70 | dBc | ||
1 MHz, 100 mVpp ripple injected on VDD | –50 |