ZHCSLT9B March 2022 – July 2022 LMK5B33216
PRODUCTION DATA
The loss-of-lock (LOL) status is available for APLL1, APLL2, and DPLL1, DPLL2, and DPLL3. The APLLs are monitored for loss-of-frequency lock only. The DPLL is monitored for both loss-of-frequency lock (LOFL) and loss-of-phase lock (LOPL). The DPLL lock threshold and loss-of-lock threshold are programmable for both LOPF and LOFL detectors.
The DPLL frequency lock detector will clear its LOFL flag when the DPLL's frequency error relative to the selected reference input is less than the lock ppm threshold. Otherwise, the lock detector will set the LOFL flag when the DPLL's frequency error is greater than the unlock ppm threshold. The ppm delta between the lock and unlock thresholds provides hysteresis to prevent the LOFL flag from toggling when the DPLL frequency error is crossing these thresholds.
A measurement accuracy (ppm) and averaging factor are used in computing the frequency lock detector register settings. A higher measurement accuracy (smaller ppm) or higher averaging factor will increase the measurement delay to set or clear the LOFL flag. Higher averaging may be useful when locking to an input with high wander or when the DPLL is configured with a narrow loop bandwidth. Note that higher averaging reduces the maximum frequency ppm thresholds that can be configured.
The DPLL phase lock detector will clear its LOPL flag when the phase error of the DPLL is less than the phase lock threshold. Otherwise, the lock detector will set the LOPL flag when the phase error is greater than the phase unlock threshold.
Users can observe the APLL and DPLL lock detector flags through the status pins and the status bits.