ZHCSDM7B February   2012  – December 2014 LMP8646

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics: 2.7 V
    6. 6.6 Electrical Characteristics: 5 V
    7. 6.7 Electrical Characteristics: 12 V
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Theory of Operation
        1. 7.3.1.1 Maximum Output Voltage, VOUT_MAX
          1. 7.3.1.1.1 Case 1: −2 V < VCM < 1.8 V, and VS > 2.7 V
          2. 7.3.1.1.2 Case 2: 1.8 V < VCM < VS, and VS > 3.3 V
          3. 7.3.1.1.3 Case 3: VCM > VS, and VS > 2.7 V
    4. 7.4 Device Functional Modes
      1. 7.4.1 Output Accuracy
      2. 7.4.2 Selection of the Sense Resistor, RSENSE
        1. 7.4.2.1 RSENSE Consideration for System Error
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Application #1: Current Limiter With a Capacitive Load
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
      2. 8.2.2 Application #2: Current Limiter With a Resistive Load
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curve
      3. 8.2.3 Application #3: Current Limiter With a Low-Dropout Regulator and Resistive Load
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
        3. 8.2.3.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 商标
    2. 11.2 静电放电警告
    3. 11.3 Glossary
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(1)
MIN MAX UNIT
Supply Voltage (VS = V+ - V) 13.2 V
Differential voltage +IN- (-IN) 6 V
Voltage at pins +IN, -IN –6 80 V
Voltage at RG pin 13.2 V
Voltage at OUT pin V- V+ V
Junction Temperature(2) 150 °C
Storage temperature range –65 150 °C
For soldering specifications see SNOA549

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) Pins +IN and -IN ±4000 V
All pins except +IN and -IN ±2000
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1250
Machine model ±250
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

MIN MAX UNIT
Supply Voltage (VS = V+ - V) 2.7 12 V
Temperature Range(2) –40 125 V

6.4 Thermal Information

THERMAL METRIC(1) LMP8646 UNIT
DDC
6 PINS
RθJA Junction-to-ambient thermal resistance 96 °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics: 2.7 V

Unless otherwise specified, all limits ensured for at TA = 25°C, VS= (V+ – V-) = (2.7 V - 0 V) = 2.7 V, −2 V < VCM < 76 V, RG= 25 kΩ, RL = 10 kΩ.(3)
PARAMETER TEST CONDITIONS MIN(5) TYP(4) MAX(5) UNIT
VOFFSET Input Offset Voltage VCM = 2.1 V –1 1 mV
VCM = 2.1 V, –40°C ≤ TJ ≤ 125°C –1.7 1.7
TCVOS Input Offset Voltage Drift(6)(8) VCM = 2.1 V 7 μV/°C
IB Input Bias Current(9) VCM = 2.1 V 12 20 μA
eni Input Voltage Noise(8) f > 10 kHz, RG = 5 kΩ 120 nV/√Hz
VSENSE Max Input Sense Voltage(8) VCM = 12 V, RG = 5 kΩ 600 mV
Gain AV Adjustable Gain Setting(8) VCM = 12 V 1 100 V/V
Gm Transconductance = 1/RIN VCM = 2.1 V 200 µA/V
Accuracy VCM = 2.1 V –2% 2%
VCM = 2.1 V, –40°C ≤ TJ ≤ 125°C –3.4% 3.4%
Gm drift(8) −40°C to 125°C, VCM= 2.1 V 140 ppm /°C
PSRR Power Supply Rejection Ratio VCM = 2.1 V, 2.7 V < V+ < 12 V 85 dB
CMRR Common-Mode Rejection Ratio 2.1 V < VCM < 76 V 95 dB
–2 V <VCM < 2.1 V 55
SR Slew Rate(7)(8) VCM = 5 V, CG = 4 pF, VSENSE from 25 mV
to 175 mV, CL = 30 pF, RL = 1MΩ
0.5 V/µs
IS Supply Current VCM = 2.1 V 380 610 uA
VCM = 2.1 V, –40°C ≤ TJ ≤ 125°C 807
VCM = –2 V 2000 2500
VCM = –2 V, –40°C ≤ TJ ≤ 125°C 2700
VOUT Maximum Output Voltage VCM = 2.1 V, RG = 500 kΩ 1.1 V
Minimum Output Voltage VCM = 2.1 V 20 mV
Maximum Output Voltage VS = VCM = 3.3 V, RG = 500 kΩ 1.6 V
Minimum Output Voltage VS = VCM = 3.3 V, RG = 500 kΩ 22 mV
IOUT Output current(8) Sourcing, VOUT= 600 mV, RG = 150 kΩ 5 mA
CLOAD Max Output Capacitance Load(8) 30 pF

6.6 Electrical Characteristics: 5 V

Unless otherwise specified, all limits ensured for at TA = 25°C, VS= V+-V-, V+ = 5 V, V = 0 V, −2 V < VCM < 76 V, Rg= 25 kΩ, RL = 10 kΩ.(3)
PARAMETER TEST CONDITIONS MIN(5) TYP(4) MAX(5) UNIT
VOFFSET Input Offset Voltage VCM = 2.1 V –1 1 mV
VCM = 2.1 V, –40°C ≤ TJ ≤ 125°C –1.7 1.7
TCVOS Input Offset Voltage Drift(6)(8) VCM = 2.1 V 7 μV/°C
IB Input Bias Current(9) VCM = 2.1 V 12.5 22 μA
eni Input Voltage Noise(8) f > 10 kHz, RG = 5 kΩ 120 nV/√Hz
VSENSE(MAX) Max Input Sense Voltage(8) VCM = 12 V, RG = 5 kΩ 600 mV
Gain AV Adjustable Gain Setting(8) VCM = 12 V 1 100 V/V
Gm Transconductance = 1/RIN VCM = 2.1 V 200 µA/V
Accuracy VCM = 2.1 V –2% 2%
VCM = 2.1 V, –40°C ≤ TJ ≤ 125°C –3.4% 3.4%
Gm drift(8) −40°C to 125°C, VCM= 2.1 V 140 ppm /°C
PSRR Power Supply Rejection Ratio VCM = 2.1 V, 2.7 V < V+ < 12 V, 85 dB
CMRR Common-Mode Rejection Ratio 2.1 V <VCM < 76 V 95 dB
–2 V < VCM < 2.1 V 55
SR Slew Rate(7)(8) VCM = 5 V, CG = 4 pF, VSENSE from 100 mV
to 500 mV, CL = 30 pF, RL= 1MΩ
0.5 V/µs
IS Supply Current VCM = 2.1 V 450 660 uA
VCM = 2.1 V, –40°C ≤ TJ ≤ 125°C 939
VCM = –2 V 2100 2800
VCM = –2 V, –40°C ≤ TJ ≤ 125°C 3030
VOUT Maximum Output Voltage VCM = 5 V, RG= 500 kΩ 3.3 V
Minimum Output Voltage VCM = 2.1 V 22 mV
IOUT Output current(8) Sourcing, VOUT= 1.65 V, RG = 150 kΩ 5 mA
CLOAD Max Output Capacitance Load(8) 30 pF

6.7 Electrical Characteristics: 12 V

Unless otherwise specified, all limits ensured for at TA = 25°C, VS= V+ - V-, V+ = 12 V, V = 0 V, −2 V < VCM < 76 V, Rg= 25 kΩ, RL = 10 kΩ.(3)
PARAMETER TEST CONDITIONS MIN(5) TYP(4) MAX(5) UNIT
VOFFSET Input Offset Voltage VCM = 2.1 V –1 1 mV
VCM = 2.1 V, –40°C ≤ TJ ≤ 125°C –1.7 1.7
TCVOS Input Offset Voltage Drift(6)(8) VCM = 2.1 V 7 μV/°C
IB Input Bias Current(9) VCM = 2.1 V 13 23 μA
eni Input Voltage Noise(8) f > 10 kHz, RG = 5 kΩ 120 nV/√Hz
VSENSE(MAX) Max Input Sense Voltage(8) VCM =12 V, RG = 5 kΩ 600 mV
Gain AV Adjustable Gain Setting(8) VCM = 12 V 1 100 V/V
Gm Transconductance = 1/RIN VCM = 2.1 V 200 µA/V
Accuracy VCM = 2.1 V –2% 2%
VCM = 2.1 V, –40°C ≤ TJ ≤ 125°C –3.4% 3.4%
Gm drift(8) −40°C to 125°C, VCM =2.1 V 140 ppm /°C
PSRR Power Supply Rejection Ratio VCM = 2.1 V, 2.7 V < V+ < 12 V 85 dB
CMRR Common-Mode Rejection Ratio 2.1 V < VCM < 76 V 95 dB
–2 V < VCM < 2.1 V 55
SR Slew Rate(7)(8) VCM = 5 V, CG = 4 pF, VSENSE from 100 mV
to 500 mV, CL = 30 pF, RL=1 MΩ
0.6 V/µs
IS Supply Current VCM = 2.1 V 555 845 uA
VCM = 2.1 V, –40°C ≤ TJ ≤ 125°C 1123
VCM = –2 V 2200 2900
CM = –2 V, –40°C ≤ TJ ≤ 125°C 3110
VOUT Maximum Output Voltage VCM = 12 V, RG= 500 kΩ, 10 V
Minimum Output Voltage VCM = 2.1 V 24 mV
IOUT Output current(8) Sourcing, VOUT= 5.25 V, RG = 150 kΩ 5 mA
CLOAD Max Output Capacitance Load(8) 30 pF
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test conditions, see the Electrical Characteristics: 2.7 V tables.
(2) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJ(MAX), θJA, and the ambient temperature, TA. The maximum allowable power dissipation PDMAX = (TJ(MAX) - TA)/ θJA or the number given in Absolute Maximum Ratings, whichever is lower.
(3) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No assurance of parametric performance is indicated in the electrical tables under conditions of internal self-heating where TJ > TA.
(4) Typical values represent the most likely parametric norm at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not specified on shipped production material.
(5) All limits are specified by testing, design, or statistical analysis.
(6) Offset voltage temperature drift is determined by dividing the change in VOS at the temperature extremes by the total temperature change.
(7) The number specified is the average of rising and falling slew rates and measured at 90% to 10%.
(8) This parameter is specified by design and/or characterization and is not tested in production.
(9) Positive Bias Current corresponds to current flowing into the device.

6.8 Typical Characteristics

Unless otherwise specified: TA = 25°C, VS= V+ - V-, VSENSE= +IN - (-IN), RL = 10 kΩ.
LMP8646 30123562.gifFigure 1. Supply Curent vs. Supply Voltage for VCM = 2 V
LMP8646 30123512.gifFigure 3. AC PSRR vs. Frequency
LMP8646 30123596.gifFigure 5. CMRR vs. High VCM
LMP8646 30123537.gifFigure 7. Gain vs. Frequency (BW = 35 kHz)
LMP8646 30123579.gifFigure 9. Gain Accuracy vs. VCM
LMP8646 30123573.gifFigure 11. VOUT_MAX vs. Gain at Vs = 2.7 V
LMP8646 30123575.gifFigure 13. VOUT_MAX vs. Gain at Vs = 12 V
LMP8646 30123577.gifFigure 15. VOUT_MAX vs. VS at VCM = 2.1 V
LMP8646 30123544.gifFigure 17. Large Step Response at BW = 35 kHz
LMP8646 30123546.gifFigure 19. Small Step Response at BW = 35 kHz
LMP8646 30123548.gifFigure 21. Settling Time (Fall) at 1 kHz
LMP8646 30123550.gifFigure 23. Settling Time (Fall) at 35 kHz
LMP8646 30123552.gifFigure 25. Common-Mode Step Response (Fall) at 35 kHz
LMP8646 30123564.gifFigure 2. Supply Current vs. VCM
LMP8646 30123513.gifFigure 4. AC CMRR vs. Frequency
LMP8646 30123536.gifFigure 6. Gain vs. Frequency (BW = 1kHz)
LMP8646 30123578.gifFigure 8. Gain Accuracy vs. VCM
LMP8646 30123561.gifFigure 10. VOUT vs. VSENSE
LMP8646 30123574.gifFigure 12. VOUT_MAX vs. Gain at Vs = 5.0 V
LMP8646 30123576.gifFigure 14. VOUT_MAX vs. VS at VCM = –2 V
LMP8646 30123543.gifFigure 16. Large Step Response at BW = 1kHz
LMP8646 30123545.gifFigure 18. Small Step Response at BW = 1 kHz
LMP8646 30123547.gifFigure 20. Settling Time (Rise) at 1 kHz
LMP8646 30123549.gifFigure 22. Settling Time (Rise) at 35 kHz
LMP8646 30123551.gifFigure 24. Common-Mode Step Response (Rise) at 35 kHz