ZHCSRP9A June   2024  – September 2024 LMR36503E-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 器件比较表
  6. 引脚配置和功能
  7. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD(汽车)等级
    3. 6.3 建议的工作条件
    4. 6.4 热性能信息
    5. 6.5 电气特性
    6. 6.6 系统特性
    7. 6.7 典型特性
  8. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1  启用、启动和关断
      2. 7.3.2  外部 CLK SYNC(通过 MODE/SYNC)
        1. 7.3.2.1 脉冲相关 MODE/SYNC 引脚控制
      3. 7.3.3  可调开关频率(通过 RT)
      4. 7.3.4  电源正常输出运行
      5. 7.3.5  内部 LDO、VCC UVLO 和 VOUT/BIAS 输入
      6. 7.3.6  自举电压和 VCBOOT-UVLO(CBOOT 端子)
      7. 7.3.7  输出电压选择
      8. 7.3.8  软启动和从压降中恢复
        1. 7.3.8.1 从压降中恢复
      9. 7.3.9  电流限值和短路
      10. 7.3.10 热关断
      11. 7.3.11 输入电源电流
    4. 7.4 器件功能模式
      1. 7.4.1 关断模式
      2. 7.4.2 待机模式
      3. 7.4.3 工作模式
        1. 7.4.3.1 CCM 模式
        2. 7.4.3.2 自动模式 - 轻负载运行
          1. 7.4.3.2.1 二极管仿真
          2. 7.4.3.2.2 降频
        3. 7.4.3.3 FPWM 模式 – 轻负载运行
        4. 7.4.3.4 最短导通时间(高输入电压)运行
        5. 7.4.3.5 压降
  9. 应用和实施
    1. 8.1 应用信息
      1. 8.1.1 高温规格
    2. 8.2 典型应用
      1. 8.2.1 设计要求
      2. 8.2.2 详细设计过程
        1. 8.2.2.1  使用 WEBENCH® 工具创建定制设计方案
        2. 8.2.2.2  选择开关频率
        3. 8.2.2.3  设置输出电压
          1. 8.2.2.3.1 实现可调节输出的 FB
        4. 8.2.2.4  电感器选型
        5. 8.2.2.5  输出电容器选型
        6. 8.2.2.6  输入电容器选型
        7. 8.2.2.7  CBOOT
        8. 8.2.2.8  VCC
        9. 8.2.2.9  CFF 选型
          1. 8.2.2.9.1 外部 UVLO
        10. 8.2.2.10 最高环境温度
      3. 8.2.3 应用曲线
    3. 8.3 最佳设计实践
    4. 8.4 电源相关建议
    5. 8.5 布局
      1. 8.5.1 布局指南
        1. 8.5.1.1 接地及散热注意事项
      2. 8.5.2 布局示例
  10. 器件和文档支持
    1. 9.1 器件支持
      1. 9.1.1 第三方米6体育平台手机版_好二三四免责声明
      2. 9.1.2 开发支持
        1. 9.1.2.1 使用 WEBENCH® 工具创建定制设计方案
    2. 9.2 文档支持
      1. 9.2.1 相关文档
    3. 9.3 接收文档更新通知
    4. 9.4 支持资源
    5. 9.5 商标
    6. 9.6 静电放电警告
    7. 9.7 术语表
  11. 10修订历史记录
  12. 11机械、封装和可订购信息
    1. 11.1 卷带包装信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

电流限值和短路

LMR36503E-Q1 通过高侧和低侧 MOSFET 的逐周期电流限制,在过流情况下受到保护。

高侧 MOSFET 过流保护是通过典型峰值电流模式控制方案来实现的。当高侧开关在较短的消隐时间后导通时,将检测到高侧开关电流。在每个开关周期,将高侧开关电流与固定电流设定点的最小值,或与内部误差放大器环路的输出减去斜率补偿之后的值进行比较。由于内部误差放大器环路的输出具有最大值,并且斜率补偿随着占空比的增大而增加,因此如果占空比通常高于 35%,高侧电流限值会随着占空比的增加而降低。

当低侧开关接通时,也会检测和监控流经的电流。与高侧器件一样,低侧器件具有由内部误差放大器环路命令的关断功能。对于低侧器件,即使振荡器正常启动一个新的开关周期,也会在电流超过此值时阻止关断。与高侧器件一样,关断电流的高低也受到限制。该限值称为低侧电流限值 ILS-LIMIT(或在图 7-13 中称为 IL-LS)。如果超出低侧电流限值,低侧 MOSFET 将保持导通状态,高侧开关不会导通。一旦低侧电流降至此限值以下,低侧开关就会关断,并且只要自高侧器件上次导通后至少经过一个时钟周期,高侧开关就会再次导通。

LMR36503E-Q1 电流限值波形图 7-13 电流限值波形

由于电流波形假定值介于 ISC(或在图 7-13中为 IL-HS)和 ILS-HS 之间,因此除非占空比非常高,否则最大输出电流非常接近这两个值的平均值。在电流限制下运行之后将使用迟滞控制,并且电流不会随着输出电压接近零而增加。

如果占空比非常高,电流纹波必须非常低以防止不稳定。由于电流纹波较低,因此该器件能够提供全电流。提供的电流非常接近 ILS-LIMIT

LMR36503E-Q1 输出电压与输出电流间的关系图 7-14 输出电压与输出电流间的关系

大多数情况下,电流限制为 IL-HS 和 IL-LS 的平均值,约为最大额定电流的 1.3 倍。如果输入电压较低,电流可限制在约为 IL-LS。另请注意,最大输出电流不超过 IL-HS 和 IL-LS 的平均值。消除过载后,器件就会像在软启动中一样恢复。

LMR36503E-Q1 短路波形图 7-15 短路波形
LMR36503E-Q1 过载输出恢复图 7-16 过载输出恢复