ZHCSP51B december   2020  – may 2023 LMR43610 , LMR43620

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Revision History
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 System Characteristics
    7. 7.7 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Enable, Start-Up, and Shutdown
      2. 8.3.2  External CLK SYNC (with MODE/SYNC)
        1. 8.3.2.1 Pulse-Dependent MODE/SYNC Pin Control
      3. 8.3.3  Adjustable Switching Frequency (with RT)
      4. 8.3.4  Power-Good Output Operation
      5. 8.3.5  Internal LDO, VCC, and VOUT/FB Input
      6. 8.3.6  Bootstrap Voltage and VBOOT-UVLO (BOOT Terminal)
      7. 8.3.7  Output Voltage Selection
      8. 8.3.8  Soft Start and Recovery from Dropout
        1. 8.3.8.1 Recovery from Dropout
      9. 8.3.9  Current Limit and Short Circuit
      10. 8.3.10 Thermal Shutdown
      11. 8.3.11 Input Supply Current
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
      2. 8.4.2 Standby Mode
      3. 8.4.3 Active Mode
        1. 8.4.3.1 CCM Mode
        2. 8.4.3.2 Auto Mode – Light-Load Operation
          1. 8.4.3.2.1 Diode Emulation
          2. 8.4.3.2.2 Frequency Reduction
        3. 8.4.3.3 FPWM Mode – Light-Load Operation
        4. 8.4.3.4 Minimum On-Time (High Input Voltage) Operation
        5. 8.4.3.5 Dropout
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Choosing the Switching Frequency
        2. 9.2.2.2 Setting the Output Voltage
          1. 9.2.2.2.1 FB for Adjustable Output
        3. 9.2.2.3 Inductor Selection
        4. 9.2.2.4 Output Capacitor Selection
        5. 9.2.2.5 Input Capacitor Selection
        6. 9.2.2.6 CBOOT
        7. 9.2.2.7 VCC
        8. 9.2.2.8 CFF Selection
          1. 9.2.2.8.1 External UVLO
        9. 9.2.2.9 Maximum Ambient Temperature
      3. 9.2.3 Application Curves
    3. 9.3 Best Design Practices
    4. 9.4 Power Supply Recommendations
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
        1. 9.5.1.1 Ground and Thermal Considerations
      2. 9.5.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 第三方米6体育平台手机版_好二三四免责声明
      2. 10.1.2 Device Nomenclature
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 支持资源
    4. 10.4 Trademarks
    5. 10.5 静电放电警告
    6. 10.6 术语表
  12. 11Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Typical Application

Figure 9-1 shows a typical application circuit for the LMR436x0. This device is designed to function over a wide range of external components and system parameters. However, the internal compensation is optimized for a certain range of external inductance and output capacitance. As a quick-start guide, Table 9-1 and Table 9-3 provide typical component values for a range of the most common output voltages.

GUID-20220215-SS0I-JXVG-LVGJ-DLXVFP3TZQPR-low.svg
The RT pin is factory-set for externally adjustable switching frequency RT variants only. Tying this pin to GND results in 2.2-MHz switching frequency. See Section 8.3.3 for details.
The MODE/SYNC pin is factory-set for fixed frequency frequency MODE/SYNC variants only. Tying this pin to GND results in AUTO mode. See Section 8.3.2 for details.
Figure 9-1 Example Application Circuit
Table 9-1 Typical External Component Values for Adjustable Output LMR43620
ƒSW (kHz)(1) VOUT (V) L (µH)(2) NOMINAL COUT (RATED CAPACITANCE) MINIMUM COUT (RATED CAPACITANCE) RFBT (kΩ) RFBB (kΩ) CIN CBOOT CVCC CFF
400 3.3 10 3 × 22 µF 1 × 47 µF 33.2 14.3 4.7 µF + 1 × 100 nF 100 nF 1 µF 22 pF
1000 3.3 4.7 2 × 22 µF 3 × 10 µF 33.2 14.3 2.2 µF + 1 × 100 nF 100 nF 1 µF 22 pF
2200 3.3 2.2 2 × 22 µF 1 × 22 µF 33.2 14.3 4.7 µF + 1 × 100 nF 100 nF 1 µF 22 pF
400 5 10 3 × 22 µF 1 × 47 µF 49.9 12.4 4.7 µF + 1 × 100 nF 100 nF 1 µF 22 pF
1000 5 4.7 2 × 22 µF 3 × 10 µF 49.9 12.4 2.2 µF + 1 × 100 nF 100 nF 1 µF 22 pF
2200 5 2.2 2 × 22 µF 1 × 22 µF 49.9 12.4 4.7 µF + 1 × 100 nF 100 nF 1 µF 22 pF
The switching frequencies listed here can be achieved in a number of ways depending on the device variant. For RT devices see Section 8.3.3. For MODE/SYNC devices see Section 8.3.2.
Inductor values are calculated based on typical VIN = 13.5 V.
Table 9-2 Typical External Component Values for Adjustable Output LMR43610
ƒSW (kHz)(1) VOUT (V) L (µH)(2) NOMINAL COUT (RATED CAPACITANCE) MINIMUM COUT (RATED CAPACITANCE) RFBT (kΩ) RFBB (kΩ) CIN CBOOT CVCC CFF(3)
400 3.3 22 2 × 22 µF 4 × 10 µF 33.2 14.3 4.7 µF + 1 × 100 nF 100 nF 1 µF 22 pF
1000 3.3 8.2 1 × 22 µF 2 × 10 µF 33.2 14.3 4.7 µF + 1 × 100 nF 100 nF 1 µF 22 pF
2200 3.3 2.2 1 × 22 µF 2 × 10 µF 33.2 14.3 4.7 µF + 1 × 100 nF 100 nF 1 µF 22 pF
400 5 22 2 × 22 µF 4 × 10 µF 49.9 12.4 4.7 µF + 1 × 100 nF 100 nF 1 µF 22 pF
1000 5 4.7 1 × 22 µF 2 × 10 µF 49.9 12.4 4.7 µF + 1 × 100 nF 100 nF 1 µF 22 pF
2200 5 2.2 1 × 22 µF 2 × 10 µF 49.9 12.4 4.7 µF + 1 × 100 nF 100 nF 1 µF 22 pF
The switching frequencies listed here can be achieved in a number of ways depending on the device variant. For RT devices see Section 8.3.3. For MODE/SYNC devices see Section 8.3.2.
Inductor values are calculated based on typical VIN = 13.5 V.
CFF to be placed in parallel with RFBT.
Table 9-3 Typical External Component Values for Fixed Output LMR43620
ƒSW (kHz)(1) VOUT (V) L (µH)(2) NOMINAL COUT (RATED CAPACITANCE) MINIMUM COUT (RATED CAPACITANCE) RFBT (Ω) RFBB (Ω)(3) CIN CBOOT CVCC
400 3.3 10 3 × 22 µF 1 × 47 µF 0 DNP 4.7 µF + 1 × 100 nF 100 nF 1 µF
1000 3.3 4.7 2 × 22 µF 3 × 10 µF 0 DNP 2.2 µF + 1 × 100 nF 100 nF 1 µF
2200 3.3 2.2 2 × 22 µF 1 × 22 µF 0 DNP 4.7 µF + 1 × 100 nF 100 nF 1 µF
400 5 10 3 × 22 µF 1 × 47 µF 0 DNP 4.7 µF + 1 × 100 nF 100 nF 1 µF
1000 5 4.7 2 × 22 µF 3 × 10 µF 0 DNP 2.2 µF + 1 × 100 nF 100 nF 1 µF
2200 5 2.2 2 × 22 µF 1 × 22 µF 0 DNP 4.7 µF + 1 × 100 nF 100 nF 1 µF
The switching frequencies listed here can be achieved in a number of ways depending on the device variant. For RT devices see Section 8.3.3. For MODE/SYNC devices see Section 8.3.2.
Inductor values are calculated based on typical VIN = 13.5 V.
DNP = Do Not Populate.
Table 9-4 Typical External Component Values for Fixed Output LMR43610
ƒSW (kHz)(1) VOUT (V) L (µH)(2) NOMINAL COUT (RATED CAPACITANCE) MINIMUM COUT (RATED CAPACITANCE) RFBT (Ω) RFBB (Ω)(3) CIN CBOOT CVCC
400 3.3 22 2 × 22 µF 4 × 10 µF 0 DNP 4.7 µF + 1 × 100 nF 100 nF 1 µF
1000 3.3 4.7 1 × 22 µF 2 × 10 µF 0 DNP 2.2 µF + 1 × 100 nF 100 nF 1 µF
2200 3.3 2.2 1 × 22 µF 2 × 10 µF 0 DNP 4.7 µF + 1 × 100 nF 100 nF 1 µF
400 5 22 2 × 22 µF 4 × 10 µF 0 DNP 4.7 µF + 1 × 100 nF 100 nF 1 µF
1000 5 4.7 1 × 22 µF 2 × 10 µF 0 DNP 2.2 µF + 1 × 100 nF 100 nF 1 µF
2200 5 2.2 1 × 22 µF 2 × 10 µF 0 DNP 4.7 µF + 1 × 100 nF 100 nF 1 µF
The switching frequencies listed here can be achieved in a number of ways depending on the device variant. For RT devices see Section 8.3.3. For MODE/SYNC devices see Section 8.3.2.
Inductor values are calculated based on typical VIN = 13.5 V.
DNP = Do Not Populate.