ZHCSL78Y august   1999  – august 2023 LMV321 , LMV324 , LMV358

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 修订历史记录
  6. 引脚配置和功能
  7. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级
    3. 6.3 建议运行条件
    4. 6.4 热性能信息:LMV321
    5. 6.5 热性能信息:LMV324
    6. 6.6 热性能信息:LMV358
    7. 6.7 电气特性:VCC+ = 2.7V
    8. 6.8 电气特性:VCC+ = 5V
    9. 6.9 典型特性
  8. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1 工作电压
      2. 7.3.2 单位增益带宽
      3. 7.3.3 压摆率
    4. 7.4 器件功能模式
  9. 应用和实施
    1. 8.1 典型应用
      1. 8.1.1 设计要求
      2. 8.1.2 详细设计过程
        1. 8.1.2.1 放大器选择
        2. 8.1.2.2 无源组件选择
      3. 8.1.3 应用曲线
    2. 8.2 电源相关建议
    3. 8.3 布局
      1. 8.3.1 布局指南
      2. 8.3.2 布局示例
  10. 器件和文档支持
    1. 9.1 接收文档更新通知
    2. 9.2 支持资源
    3. 9.3 商标
    4. 9.4 静电放电警告
    5. 9.5 术语表
  11. 10机械、封装和可订购信息

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • D|14
  • PW|14
散热焊盘机械数据 (封装 | 引脚)
订购信息

布局指南

为了实现器件的最佳工作性能,应使用良好的 PCB 布局实践,包括:

  • 噪声可通过全部电路电源引脚以及运算放大器自身传入模拟电路。旁路电容器通过提供位于模拟电路本地的低阻抗电源来降低耦合噪声。
    • 在每个电源引脚和接地端之间连接低 ESR 0.1µF 陶瓷旁路电容器,放置位置尽量靠近器件。从 V+ 到接地端的单个旁路电容器适用于单电源应用。
  • 将电路的模拟和数字部分单独接地是最简单且最有效的噪声抑制方法之一。通常将多层 PCB 中的一层或多层专门作为接地层。接地层有助于散热和减少电磁干扰 (EMI) 噪声拾取。确保对数字接地和模拟接地进行物理隔离,同时应注意接地电流的流动。更多详细信息,请参阅电路板布局布线技巧
  • 为了减少寄生耦合,请让输入走线尽可能远离电源或输出走线。如果这些迹线不能保持分离状态,最好让敏感走线与有噪声的走线垂直相交,而不是平行相交。
  • 外部组件的位置应尽量靠近器件。如布局示例 部分中所示,使 RF 和 RG 接近反相输入可最大限度地减小寄生电容。
  • 尽可能缩短输入走线。切记:输入走线是电路中最敏感的部分。
  • 考虑在关键走线周围设定驱动型低阻抗保护环。这样可显著减少附近走线在不同电势下产生的漏电流。