ZHCSHO5C December   2017  – March 2023 LMZM23601

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
    1.     Device Comparison
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 System Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Control Scheme
      2. 7.3.2 Soft-Start Function
      3. 7.3.3 Enable and External UVLO Function
      4. 7.3.4 Current Limit
      5. 7.3.5 Hiccup Mode
      6. 7.3.6 Power Good (PGOOD) Function
      7. 7.3.7 MODE/SYNC Function
        1. 7.3.7.1 Forced PWM Mode
        2. 7.3.7.2 Auto PFM Mode
        3. 7.3.7.3 Dropout Mode
        4. 7.3.7.4 SYNC Operation
      8. 7.3.8 Thermal Protection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown
      2. 7.4.2 FPWM Operation
      3. 7.4.3 Auto PFM Mode Operation
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 Maximum Input Voltage for VOUT < 2.5 V
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design With WEBENCH® Tools
        2. 8.2.2.2 Input Capacitor Selection
        3. 8.2.2.3 Output Capacitor Selection
        4. 8.2.2.4 Feedback Voltage Divider for Adjustable Output Voltage Versions
        5. 8.2.2.5 RPU - PGOOD Pullup Resistor
        6. 8.2.2.6 VIN Divider and Enable
      3. 8.2.3 Application Curves
        1. 8.2.3.1 VOUT = 5 V
        2. 8.2.3.2 VOUT = 3.3 V
        3. 8.2.3.3 VOUT = 12 V
        4. 8.2.3.4 VOUT = 15 V
        5. 8.2.3.5 VOUT = 2.5 V
        6. 8.2.3.6 VOUT = 1.2 V and VOUT = 1.8 V
        7. 8.2.3.7 VOUT = 5 V and 3.3 V Fixed Output Options
    3. 8.3 Best Design Practices
    4. 8.4 Power Supply Recommendations
      1. 8.4.1 Supply Voltage Range
      2. 8.4.2 Supply Current Capability
      3. 8.4.3 Supply Input Connections
        1. 8.4.3.1 Voltage Drops
        2. 8.4.3.2 Stability
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
        1. 8.5.1.1 Thermal Design
      2. 8.5.2 Layout Examples
  9. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 第三方米6体育平台手机版_好二三四免责声明
      2. 9.1.2 Development Support
        1. 9.1.2.1 Custom Design With WEBENCH® Tools
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 接收文档更新通知
    4. 9.4 支持资源
    5. 9.5 Trademarks
    6. 9.6 静电放电警告
    7. 9.7 术语表
  10. 10Mechanical, Packaging, and Orderable Information
    1. 10.1 Tape and Reel Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • SIL|10
散热焊盘机械数据 (封装 | 引脚)
订购信息

Output Capacitor Selection

TI recommends low-ESR ceramic capacitors for output capacitors. There is a requirement for minimum capacitance on the output of the LMZM23601 to ensure stable operation. The minimum output capacitance requirement depends on the output voltage setting. There is also a maximum capacitance value for stability and to limit the in-rush supply current. Excessive output capacitance can result in excessive current to be drawn from the input supply during startup. If the overcurrent condition is persistent during start-up, the over current protection of the LMZM23601 can activate and affect the normal output voltage ramp up. In extreme cases, the Section 7.3.5 operation can be activated during start-up if the maximum output capacitance is exceeded.

Refer to Table 8-3 for the minimum, recommended, and maximum output capacitance values for each output voltage. For this example with a 5-V output a 22-µF capacitor can be used.

Table 8-3 Output Capacitor
OUTPUT VOLTAGEMINIMUM
OUTPUT CAPACITANCE
RECOMMENDED
OUTPUT CAPACITANCE
MAXIMUM
OUTPUT CAPACITANCE
1.2 V82 µF100 µF470 µF
1.8 V68 µF82 µF470 µF
2.5 V47 µF68 µF390 µF
3.3 V22 µF33 µF330 µF
5 V15 µF22 µF220 µF
12 V10 µF15 µF200 µF
15 V10 µF15 µF200 µF