ZHCSIY5A October   2018  – May 2019 LMZM33604

PRODUCTION DATA.  

  1. 特性
  2. 应用
    1.     简化电路原理图
  3. 说明
    1.     最小解决方案尺寸
    2.     典型效率(自动模式)
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics (VIN = 12 V)
    8. 6.8 Typical Characteristics (VIN = 24 V)
    9. 6.9 Typical Characteristics (VIN = 36 V)
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Adjusting the Output Voltage
      2. 7.3.2  Input Capacitor Selection
      3. 7.3.3  Output Capacitor Selection
      4. 7.3.4  Transient Response
      5. 7.3.5  Feed-Forward Capacitor
      6. 7.3.6  Switching Frequency (RT)
      7. 7.3.7  Synchronization (SYNC/MODE)
      8. 7.3.8  Output Enable (EN)
      9. 7.3.9  Programmable System UVLO (EN)
      10. 7.3.10 Internal LDO and BIAS_SEL
      11. 7.3.11 Power Good (PGOOD) and Power Good Pullup (PGOOD_PU)
      12. 7.3.12 Mode Select (Auto or FPWM)
      13. 7.3.13 Soft Start and Voltage Tracking
      14. 7.3.14 Voltage Dropout
      15. 7.3.15 Overcurrent Protection (OCP)
      16. 7.3.16 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Active Mode
      2. 7.4.2 Auto Mode
      3. 7.4.3 FPWM Mode
      4. 7.4.4 Shutdown Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Output Voltage Setpoint
        2. 8.2.2.2 Setting the Switching Frequency
        3. 8.2.2.3 Input Capacitors
        4. 8.2.2.4 Output Capacitor Selection
        5. 8.2.2.5 Feed-Forward Capacitor (CFF)
        6. 8.2.2.6 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Examples
    3. 10.3 Theta JA vs PCB Area
    4. 10.4 Package Specifications
    5. 10.5 EMI
      1. 10.5.1 EMI Plots
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 第三方米6体育平台手机版_好二三四免责声明
    2. 11.2 接收文档更新通知
    3. 11.3 社区资源
    4. 11.4 商标
    5. 11.5 静电放电警告
    6. 11.6 Glossary
  12. 12机械、封装和可订购信息
    1. 12.1 Tape and Reel Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • RLX|41
散热焊盘机械数据 (封装 | 引脚)
订购信息

Internal LDO and BIAS_SEL

The LMZM33604 integrates an internal LDO, generating a typical VCC voltage (3.27 V) for control circuitry and MOSFET drivers. The LDO generates VCC voltage from VIN unless a sufficient bias voltage, VBIAS, is applied to BIAS_SEL pin. The BIAS_SEL input provides an option to supply the LDO with a lower voltage than VIN to reduce the LDO power loss. The smaller the difference between the input applied to the LDO, VIN_LDO, and the LDO output voltage, VCC, the more efficiently the device will perform. The amount of current supplied through the LDO will change based on operating conditions. Figure 36 demonstrates the typical LDO current, ILDO, for common input voltages over the recommended switching frequency range.

LMZM33604 LMZM3360x_FSWvsInternalLDOCurrent.gif
VOUT = 5 V
Figure 36. LDO Current vs Switching Frequency

The amount of power loss in the LDO can be calculated by Equation 4.

Equation 4. LMZM33604 PLossLDO_Eq.gif

For example, when the device is operating at VIN = 24 V, VOUT = 5 V, fsw = 500 kHz, BIAS_SEL = PGND, the ILDO is typical 11 mA, therefore, the PLOSS_LDO = 11 mA × (24 V – 3.27 V) = 228.03 mW. For the same operating conditions with BIAS_SEL = 5 V, the power loss is equal to 11 mA × (5 V – 3.27 V) = 19.03 mW. The benefits of applying a bias voltage to reduce power loss are most notable in applications when VIN » VCC or when the device is operating at a higher switching frequency. The power savings can be calculated by Equation 5.

Equation 5. LMZM33604 PowerSavings_Eq.gif

Figure 37 and Figure 38 show efficiency plots of the LMZM33604 operating with different source voltages applied to the BIAS_SEL pin. Figure 39 demonstrates the power dissipation of the device with various source voltages at BIAS_SEL pin. The plots include BIAS_SEL tied to a 3.3 V external bias, 5 V external bias, VOUT (5 V) and no bias voltage applied. The efficiency improvements are more significant when the device is operating at light loads because the LDO loss is a higher percentage of the total loss.

LMZM33604 LMZM33604_LoadEfficiencywithBIAS_SEL_24Vin5Vout.gif
VIN = 24 V fSW = 500 kHz FPWM Mode
Figure 37. Efficiency Comparison with BIAS_SEL vs Output Current
LMZM33604 LMZM33604_PowerDissipationwithBIAS_SEL_24Vin5Vout.gif
VIN = 24 V fSW = 500 kHz FPWM Mode
Figure 39. Power Dissipation Comparison with BIAS_SEL
LMZM33604 LMZM33604_LoadEfficiencywithBIAS_SEL_24Vin5Vout_LogScale.gif
VIN = 24 V fSW = 500 kHz FPWM Mode
Figure 38. Efficiency Comparison with BIAS_SEL vs Output Current