ZHCSFD7A August   2016  – August 2016 LPV801 , LPV802

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
      1. 7.4.1 Negative-Rail Sensing Input
      2. 7.4.2 Rail to Rail Output Stage
      3. 7.4.3 Design Optimization for Nanopower Operation
      4. 7.4.4 Driving Capacitive Load
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application: Three Terminal CO Gas Sensor Amplifier
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
    3. 8.3 Do's and Don'ts
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 开发支持
    2. 11.2 接收文档更新通知
    3. 11.3 社区资源
    4. 11.4 相关链接
    5. 11.5 商标
    6. 11.6 静电放电警告
    7. 11.7 Glossary
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Specifications

Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
Supply voltage, Vs = (V+) - (V-) –0.3 6 V
Input pins Voltage (2) (3) Common mode (V-) - 0.3 (V+) + 0.3 V
Differential (V-) - 0.3 (V+) + 0.3 V
Input pins Current -10 10 mA
Output short current (4) Continuous Continuous
Operating temperature –40 125 °C
Storage temperature, Tstg –65 150 °C
Junction temperature 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Not to exceed -0.3V or +6.0V on ANY pin, referred to V-
Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails should be current-limited to 10 mA or less.
Short-circuit to Vs/2, one amplifer per package. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±250
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. Pins listed as ±750 V may actually have higher performance.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Supply voltage (V+ – V–) 1.6 5.5 V
Specified temperature -40 125 °C

Thermal Information

THERMAL METRIC(1) LPV801
DBV
5 PINS
LPV802
DGK
8 PINS
UNIT
θJA Junction-to-ambient thermal resistance 177.4 184.2 ºC/W
θJCtop Junction-to-case (top) thermal resistance 133.9 75.3
θJB Junction-to-board thermal resistance 36.3 105.5
ψJT Junction-to-top characterization parameter 23.6 13.5
ψJB Junction-to-board characterization parameter 35.7 103.9
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

TA = 25°C, VS = 1.8V to 5 V, VCM = VOUT = VS/2, and RL≥ 10 MΩ to VS / 2, unless otherwise noted.(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OFFSET VOLTAGE
VOS Input offset voltage VS = 1.8V, 3.3V, and 5V,
VCM = V-
0.55 ±3.5 mV
VS = 1.8V, 3.3V, and 5V,
VCM = (V+) – 0.9 V
0.55 ±3.5
ΔVOS/ΔT Input offset drift VCM = V- TA = –40°C to 125°C 1 µV/°C
PSRR Power-supply rejection ratio VS = 1.8V to 5V, 
VCM = V-
1.6 60 µV/V
INPUT VOLTAGE RANGE
VCM Common-mode voltage range VS = 5 V 0 4.1 V
CMRR Common-mode rejection ratio (V–) ≤ VCM ≤ (V+) – 0.9 V, VS= 5V 80 98 dB
INPUT BIAS CURRENT
IB Input bias current VS = 1.8V ±100 fA
IOS Input offset current VS = 1.8V ±100
INPUT IMPEDANCE
Differential 7 pF
Common mode 3
NOISE
En Input voltage noise ƒ = 0.1 Hz to 10 Hz 6.5 µVp-p
en Input voltage noise density ƒ = 100 Hz 340 nV/√Hz
ƒ = 1 kHz 420
OPEN-LOOP GAIN
AOL Open-loop voltage gain (V–) + 0.3 V ≤ VO ≤ (V+) – 0.3 V, RL = 100 kΩ 120 dB
OUTPUT
VOH Voltage output swing from positive rail VS = 1.8V, RL = 100 kΩ to V+/2 10 3.5 mV
VOL Voltage output swing from negative rail VS = 1.8V, RL = 100 kΩ to V+/2 2.5 10
ISC Short-circuit current VS = 3.3V, Short to VS/2 4.7 mA
ZO Open loop output impedance ƒ = 1 KHz, IO = 0 A 90
FREQUENCY RESPONSE
GBP Gain-bandwidth product CL = 20 pF, RL = 10 MΩ, VS = 5V 8 kHz
SR Slew rate (10% to 90%) G = 1, Rising Edge, CL = 20 pF, VS = 5V 2 V/ms
G = 1, Falling Edge, CL = 20 pF, VS = 5V 2.1
POWER SUPPLY
IQ-LPV801 Quiescent Current VCM = V-, IO = 0, VS = 3.3 V 500 550 nA
IQ-LPV802 Quiescent Current,
Per Channel
VCM = V-, IO = 0, VS = 3.3 V 320 415 nA
LPV801 Specifications are Preliminary until released.

Typical Characteristics

at TA = 25°C, RL = 10MΩ to VS/2 ,CL = 20pF, VCM = VS / 2V unless otherwise specified.
LPV801 LPV802 TG_801_Iq_Vs_VCM.png
VCM = V- LPV801 RL=No Load
Figure 1. Supply Current vs. Supply Voltage, LPV801
LPV801 LPV802 TG_Vos_Vcm_1p8.png
VS= 1.8V RL= 10MΩ
Figure 3. Typical Offset Voltage vs. Common Mode Voltage
LPV801 LPV802 TG_Vos_Vcm_5V.png
VS= 5V RL= 10MΩ
Figure 5. Typical Offset Voltage vs. Common Mode Voltage
LPV801 LPV802 IB_VCM_1p8V_m40.png
VS= 1.8V TA = -40°C
Figure 7. Input Bias Current vs. Common Mode Voltage
LPV801 LPV802 IB_VCM_1p8V_25C.png
VS= 1.8V TA = 25°C
Figure 9. Input Bias Current vs. Common Mode Voltage
LPV801 LPV802 IB_VCM_1p8V_125C.png
VS= 1.8V TA = 125°C
Figure 11. Input Bias Current vs. Common Mode Voltage
LPV801 LPV802 TG_Isrc_Vo_18V.png
VS= 5V RL= No Load
Figure 13. Output Swing vs. Sourcing Current, 1.8V
LPV801 LPV802 TG_Isrc_Vo_3p3.png
VS= 3.3V RL= No Load
Figure 15. Output Swing vs. Sourcing Current, 3.3V
LPV801 LPV802 TG_Isrc_Vo_5V.png
VS= 5V RL= No Load
Figure 17. Output Swing vs. Sourcing Current, 5V
LPV801 LPV802 TG_SSPULSE_1p8.png
TA = 25 RL= 10MΩ Vout = 200mVpp
VS= ±0.9V CL= 20pF AV = +1
Figure 19. Small Signal Pulse Response, 1.8V
LPV801 LPV802 TG_LSPULSE_1p8.png
TA = 25 RL= 10MΩ Vout = 1Vpp
VS= ±0.9V CL= 20pF AV = +1
Figure 21. Large Signal Pulse Response, 1.8V
LPV801 LPV802 802_CMRR_vs_Freq.png
TA = 25 RL= 10MΩ ΔVCM = 0.5Vpp
VS= 5V CL= 20p
VCM = Vs/2 AV = +1
Figure 23. CMRR vs Frequency
LPV801 LPV802 AVPH_5V_10M.png
TA = -40, 25, 125°C RL= 10MΩ VOUT = 200mVPP
VS= 5V CL= 20pF VCM = Vs/2
Figure 25. Open Loop Gain and Phase, 5V, 10 MΩ Load
LPV801 LPV802 AVPH_1p8V_1M.png
TA = -40, 25, 125°C RL= 1MΩ VOUT = 200mVPP
VS= 5V CL= 20pF VCM = Vs/2
Figure 27. Open Loop Gain and Phase, 5V, 1 MΩ Load
LPV801 LPV802 AVPH_5V_100k.png
TA = -40, 25, 125°C RL= 100kΩ VOUT = 200mVPP
VS= 5V CL= 20pF VCM = Vs/2
Figure 29. Open Loop Gain and Phase, 5V, 100kΩ Load
LPV801 LPV802 AVPH_1p8V_10M.png
TA = -40, 25, 125°C RL= 10MΩ VOUT = 200mVPP
VS= 1.8V CL= 20pF VCM = Vs/2
Figure 31. Open Loop Gain and Phase, 1.8V, 10 MΩ Load
LPV801 LPV802 AVPH_1p8V_1M.png
TA = -40, 25, 125°C RL= 1MΩ VOUT = 200mVPP
VS= 1.8V CL= 20pF VCM = Vs/2
Figure 33. Open Loop Gain and Phase, 1.8V, 1 MΩ Load
LPV801 LPV802 AVPH_1p8V_100k.png
TA = -40, 25, 125°C RL= 100kΩ VOUT = 200mVPP
VS= 1.8V CL= 20pF VCM = Vs/2
Figure 35. Open Loop Gain and Phase, 1.8V, 100kΩ Load
LPV801 LPV802 TG_Iq_Vs_VCMN.png
VCM = V- LPV802 RL=No Load
Figure 2. Supply Current vs. Supply Voltage, LPV802
LPV801 LPV802 TG_Vos_Vcm_3p3V.png
VS= 3.3V RL= 10MΩ
Figure 4. Typical Offset Voltage vs. Common Mode Voltage
LPV801 LPV802 Ib_vs_Temp.png
VS= 5V TA = -40 to 125 VCM = Vs/2
Figure 6. Input Bias Current vs. Temperature
LPV801 LPV802 IB_VCM_5V_m40.png
VS= 5V TA = -40°C
Figure 8. Input Bias Current vs. Common Mode Voltage
LPV801 LPV802 IB_VCM_5V_25C.png
VS= 5V TA = 25°C
Figure 10. Input Bias Current vs. Common Mode Voltage
LPV801 LPV802 IB_VCM_5V_125C.png
VS= 5V TA = 125°C
Figure 12. Input Bias Current vs. Common Mode Voltage
LPV801 LPV802 TG_Isnk_Vo_18V.png
VS= 1.8V RL= No Load
Figure 14. Output Swing vs. Sinking Current, 1.8V
LPV801 LPV802 TG_Isnk_Vo_3V.png
VS= 3.3V RL= No Load
Figure 16. Output Swing vs. Sinking Current, 3.3V
LPV801 LPV802 TG_Isnk_Vo_5V.png
VS= 5V RL= No Load
Figure 18. Output Swing vs. Sinking Current, 5V
LPV801 LPV802 TG_SSPULSE_5.png
TA = 25 RL= 10MΩ Vout = 200mVpp
VS= ±2.5V CL= 20pF AV = +1
Figure 20. Small Signal Pulse Response, 5V
LPV801 LPV802 TG_LSPULSE_5.png
TA = 25 RL= 10MΩ Vout = 2Vpp
VS= ±2.5V CL= 20pF AV = +1
Figure 22. Large Signal Pulse Response, 5V
LPV801 LPV802 PSRR_VS_FREQ.png
TA = 25 RL= 10MΩ ΔVS = 0.5Vpp
VS= 3.3V CL= 20p
VCM = Vs/2 AV = +1
Figure 24. ±PSRR vs Frequency
LPV801 LPV802 AVPH_3V_10M.png
TA = -40, 25, 125°C RL= 10MΩ VOUT = 200mVPP
VS= 3.3V CL= 20pF VCM = Vs/2
Figure 26. Open Loop Gain and Phase, 3.3V, 10 MΩ Load
LPV801 LPV802 AVPH_3V_1M.png
TA = -40, 25, 125°C RL= 1MΩ VOUT = 200mVPP
VS= 3.3V CL= 20pF VCM = Vs/2
Figure 28. Open Loop Gain and Phase, 3.3V, 1 MΩ Load
LPV801 LPV802 AVPH_3V_100k.png
TA = -40, 25, 125°C RL= 100kΩ VOUT = 200mVPP
VS= 3.3V CL= 20pF VCM = Vs/2
Figure 30. Open Loop Gain and Phase, 3.3V, 100kΩ Load
LPV801 LPV802 TG_Zout.png
TA = 25°C VS= 5 V RL= 10MΩ
Figure 32. Open Loop Output Impedance
LPV801 LPV802 Noise.png
TA = 25 RL= 1MΩ VCM = Vs/2
VS= 5V CL= 20pF AV = +1
Figure 34. Input Voltage Noise vs Frequency
LPV801 LPV802 EMIRR_3p3V.png
TA = 25 RL= 1MΩ VCM = Vs/2
VS= 3.3V CL= 20pF AV = +1
Figure 36. EMIRR Performance