ZHCSEV2C January   2016  – September 2016 MUX508 , MUX509

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics: Dual Supply
    6. 7.6 Electrical Characteristics: Single Supply
    7. 7.7 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1  Truth Tables
    2. 8.2  On-Resistance
    3. 8.3  Off-Leakage Current
    4. 8.4  On-Leakage Current
    5. 8.5  Transition Time
    6. 8.6  Break-Before-Make Delay
    7. 8.7  Turn-On and Turn-Off Time
    8. 8.8  Charge Injection
    9. 8.9  Off Isolation
    10. 8.10 Channel-to-Channel Crosstalk
    11. 8.11 Bandwidth
    12. 8.12 THD + Noise
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Ultralow Leakage Current
      2. 9.3.2 Ultralow Charge Injection
      3. 9.3.3 Bidirectional Operation
      4. 9.3.4 Rail-to-Rail Operation
    4. 9.4 Device Functional Modes
  10. 10Applications and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
      3. 10.2.3 Application Curve
  11. 11Power-Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13器件和文档支持
    1. 13.1 文档支持
      1. 13.1.1 相关文档 
    2. 13.2 相关链接
    3. 13.3 接收文档更新通知
    4. 13.4 社区资源
    5. 13.5 商标
    6. 13.6 静电放电警告
    7. 13.7 Glossary
  14. 14机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage VDD –0.3 40 V
VSS –40 0.3
VDD – VSS 40
Digital input pins(2) EN, A0, A1, A2 pins Voltage VSS – 0.3 VDD + 0.3 V
Current –30 30 mA
Analog input pins(2) Sx, SxA, SxB pins Voltage VSS – 2 VDD + 2 V
Current –30 30 mA
Analog output pins(2) D, DA, DB pins Voltage VSS – 2 VDD + 2 V
Current –30 30 mA
Temperature Operating, TA –55 150 °C
Junction, TJ 150
Storage, Tstg –65 150
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Only one pin at a time

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) 2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) 500
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

MIN NOM MAX UNIT
VDD(1) Positive power-supply voltage Dual supply 5 18 V
Single supply 10 36
VSS(2) Negative power-supply voltage (dual supply) –5 –18 V
VDD – VSS Supply voltage 10 36 V
VS Source pins voltage(3) VSS VDD V
VD Drain pins voltage VSS VDD V
VEN Enable pin voltage VSS VDD V
VA Address pins voltage VSS VDD V
ICH Channel current (TA = 25°C) –25 25 mA
TA Operating temperature –40 125 °C
When VSS = 0 V, VDD can range from 10 V to 36 V.
VDD and VSS can be any value as long as 10 V ≤ (VDD – VSS) ≤ 36 V, and VDD ≥ 5 V.
VS is the voltage on all the S pins.

Thermal Information

THERMAL METRIC(1) MUX50x UNIT
PW (TSSOP) D (SOIC)
16 PINS 16 PINS
RθJA Junction-to-ambient thermal resistance 103.8 78.3 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 36.8 37.2 °C/W
RθJB Junction-to-board thermal resistance 49.8 35.7 °C/W
ψJT Junction-to-top characterization parameter 2.7 8.2 °C/W
ψJB Junction-to-board characterization parameter 49.1 35.4 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance n/a n/a °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics.

Electrical Characteristics: Dual Supply

at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG SWITCH
Analog signal range TA = –40°C to +125°C VSS VDD V
RON On-resistance VS = 0 V, ICH = 1 mA 125 170 Ω
VS = ±10 V, ICH = 1 mA 145 200
TA = –40°C to +85°C 230
TA = –40°C to +125°C 250
ΔRON On-resistance mismatch between channels VS = ±10 V, ICH = 1 mA 2.4 6 Ω
TA = –40°C to +85°C 9
TA = –40°C to +125°C 11
RFLAT On-resistance flatness VS = 10 V, 0 V, –10 V 22 45 Ω
TA = –40°C to +85°C 53
TA = –40°C to +125°C 58
On-resistance drift VS = 0 V 0.52 %/°C
IS(OFF) Input leakage current Switch state is off,
VS = ±10 V, VD = ±10 V(2)
–1 0.01 1 nA
TA = –40°C to +85°C –10 10
TA = –40°C to +125°C –25 25
ID(OFF) Output off leakage current Switch state is off,
VS = ±10 V, VD = ±10 V(2)
–1 0.01 1 nA
TA = -40°C to +85°C –10 10
TA = -40°C to +125°C –50 50
ID(ON) Output on leakage current Switch state is on,
VD = ±10 V, VS = floating
–1 0.01 1 nA
TA = –40°C to +85°C –10 10
TA = –40°C to +125°C –50 50
LOGIC INPUT
VIH High-level input voltage 2.0 V
VIL Low-level input voltage 0.8 V
ID Input current 0.15 µA
SWITCH DYNAMICS(1)
tON Enable turn-on time VS = ±10 V, RL = 300 Ω,
CL= 35 pF
88 136 ns
TA = –40°C to +85°C 144
TA = –40°C to +125°C 151
tOFF Enable turn-off time VS = ±10 V, RL = 300 Ω,
CL= 35 pF
63 75 ns
TA = –40°C to +85°C 83
TA = –40°C to +125°C 90
tt Transition time VS = 10 V, RL = 300 Ω,
CL= 35 pF,
92 143 ns
TA = –40°C to +85°C 151
TA = –40°C to +125°C 157
tBBM Break-before-make time delay VS = 10 V, RL = 300 Ω, CL= 35 pF, TA = –40°C to +125°C 30 54 ns
QJ Charge injection CL = 1 nF, RS = 0 Ω VS = 0 V 0.3 pC
VS = –15 V to +15 V ±0.6
Off-isolation RL = 50 Ω, VS = 1 VRMS,
f = 1 MHz
Nonadjacent channel to D, DA, DB –96 dB
Adjacent channel to D, DA, DB –85
Channel-to-channel crosstalk RL = 50 Ω, VS = 1 VRMS,
f = 1 MHz
Nonadjacent channels –96 dB
Adjacent channels –88
CS(OFF) Input off-capacitance f = 1 MHz, VS = 0 V 2.4 2.9 pF
CD(OFF) Output off-capacitance f = 1 MHz, VS = 0 V MUX508 7.5 8.4 pF
MUX509 4.3 5
CD(ON) Input/Output on-capacitance f = 1 MHz, VS = 0 V MUX508 9.4 10.6 pF
MUX509 6.7 7.7
POWER SUPPLY
VDD supply current All VA = 0 V or 3.3 V,
VS = 0 V, VEN = 3.3 V,
45 59 µA
TA = –40°C to +85°C 62
TA = –40°C to +125°C 83
VSS supply current All VA = 0 V or 3.3 V,
VS = 0 V, VEN = 3.3 V,
25 34 µA
TA = –40°C to +85°C 37
TA = –40°C to +125°C 57
Specified by design, not production tested.
When VS is positive, VD is negative, and vice versa.

Electrical Characteristics: Single Supply

at TA = 25°C, VDD = 12 V, and VSS = 0 V (unless otherwise noted)(2)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG SWITCH
Analog signal range TA = –40°C to +125°C VSS VDD V
RON On-resistance VS = 10 V, ICH = 1 mA 235 340 Ω
TA = –40°C to +85°C 390
TA = –40°C to +125°C 430
ΔRON On-resistance match VS = 10 V, ICH = 1 mA 3.1 12 Ω
TA = –40°C to +85°C 19
TA = –40°C to +125°C 23
On-resistance drift VS = 10 V 0.47 %/°C
IS(OFF) Input leakage current Switch state is off,
VS = 1 V and VD = 10 V,
or VS = 10 V and VD = 1 V(1)
–1 0.01 1 nA
TA = –40°C to +85°C –10 10
TA = –40°C to +125°C –25 25
ID(OFF) Output off leakage current Switch state is off,
VS = 1 V and VD = 10 V,
or VS = 10 V and VD = 1 V(1)
–1 0.01 1 nA
TA = –40°C to +85°C –10 10
TA = –40°C to +125°C –50 50
ID(ON) Output on leakage current Switch state is on,
VD = 1 V and 10 V,
VS = floating
–1 0.01 1 nA
TA = –40°C to +85°C –10 10
TA = –40°C to +125°C –50 50
LOGIC INPUT
VIH High-level input voltage 2.0 V
VIL Low-level input voltage 0.8 V
ID Input current 0.15 µA
SWITCH DYNAMIC CHARACTERISTICS
tON Enable turn-on time VS = 8 V, RL = 300 Ω,
CL= 35 pF
85 140 ns
TA = –40°C to +85°C 145
TA = –40°C to +125°C 149
tOFF Enable turn-off time VS = 8 V, RL = 300 Ω,
CL= 35 pF
48 83 ns
TA = –40°C to +85°C 94
TA = –40°C to +125°C 102
tt Transition time VS = 8 V, CL= 35 pF 87 147 ns
VS = 8 V, RL = 300 Ω,
CL= 35 pF,
TA = –40°C to +85°C 153
VS = 8 V, RL = 300 Ω,
CL= 35 pF,
TA = –40°C to +125°C 155
tBBM Break-before-make time delay VS = 8 V, RL = 300 Ω, CL= 35 pF, TA = –40°C to +125°C 30 54 ns
QJ Charge injection CL = 1 nF, RS = 0 Ω VS = 6 V 0.15 pC
VS = 0 V to 12 V, ±0.4
Off-isolation RL = 50 Ω, VS = 1 VRMS,
f = 1 MHz
Nonadjacent channel to D, DA, DB -96 dB
Adjacent channel to D, DA, DB -85
Channel-to-channel crosstalk RL = 50 Ω, VS = 1 VRMS,
f = 1 MHz
Nonadjacent channels –96 dB
Adjacent channels -88
CS(OFF) Input off-capacitance f = 1 MHz, VS = 6 V 2.7 3.2 pF
CD(OFF) Output off-capacitance f = 1 MHz, VS = 6 V MUX508 9.1 10 pF
MUX509 5 5.7
CD(ON) Input/Output on-capacitance f = 1 MHz, VS = 6 V MUX508 10.8 12 pF
MUX509 6.9 8
POWER SUPPLY
VDD supply current All VA = 0 V or 3.3 V,
VS= 0 V, VEN = 3.3 V
42 53 µA
TA = –40°C to +85°C 56
TA = –40°C to +125°C 77
VSS supply current All VA = 0 V or 3.3 V,
VS = 0 V, VEN = 3.3 V
23 38 µA
TA = –40°C to +85°C 31
TA = –40°C to +125°C 51
When VS is 1 V, VD is 10 V, and vice versa.
Specified by design, not production tested.

Typical Characteristics

at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)
MUX508 MUX509 C001_SBOS705.png
Figure 1. On-Resistance vs Source or Drain Voltage
MUX508 MUX509 C003_SBOS705.png
Figure 3. On-Resistance vs Source or Drain Voltage
MUX508 MUX509 C023_SBOS705.png
Figure 5. On-Resistance vs Source or Drain Voltage
MUX508 MUX509 C029_SBOS705.png
VDD = 24 V, VSS = 0 V
Figure 7. On-Resistance vs Source or Drain Voltage
MUX508 MUX509 C006_SBOS705.png
VDD = 15 V, VSS = –15 V
Figure 9. Leakage Current vs Temperature
MUX508 MUX509 C008_SBOS705.png
MUX508, source-to-drain
Figure 11. Charge Injection vs Source Voltage
MUX508 MUX509 C011_SBOS705.png
Drain-to-source
Figure 13. Charge Injection vs Source or Drain Voltage
MUX508 MUX509 C012_SBOS705.png
Figure 15. Off Isolation vs Frequency
MUX508 MUX509 C014_SBOS705.png
Figure 17. THD+N vs Frequency
MUX508 MUX509 C015_SBOS705.png
MUX508, VDD = 15 V, VSS = –15 V
Figure 19. Capacitance vs Source Voltage
MUX508 MUX509 C016_SBOS705.png
MUX508, VDD = 30 V, VSS = 0 V
Figure 21. Capacitance vs Source Voltage
MUX508 MUX509 C022_SBOS705.png
MUX508, VDD = 12 V, VSS = 0 V
Figure 23. Capacitance vs Source Voltage
MUX508 MUX509 C021_SBOS705.png
Figure 25. Source Current vs Drain Current
MUX508 MUX509 C002_SBOS705.png
VDD = 15 V, VSS = –15 V
Figure 2. On-Resistance vs Source or Drain Voltage
MUX508 MUX509 C004_SBOS705.png
VDD = 12 V, VSS = 0 V
Figure 4. On-Resistance vs Source or Drain Voltage
MUX508 MUX509 C005_SBOS705.png
Figure 6. On-Resistance vs Source or Drain Voltage
MUX508 MUX509 C024_SBOS705.png
VDD = 12 V, VSS = –12 V
Figure 8. On-Resistance vs Source or Drain Voltage
MUX508 MUX509 C007_SBOS705.png
VDD = 12 V, VSS = 0 V
Figure 10. Leakage Current vs Temperature
MUX508 MUX509 C025_SBOS705.png
MUX509, source-to-drain
Figure 12. Charge Injection vs Source Voltage
MUX508 MUX509 C010_SBOS705.png
Figure 14. Turn-On and Turn-Off Times vs Temperature
MUX508 MUX509 C013_SBOS705.png
Figure 16. Crosstalk vs Frequency
MUX508 MUX509 C018_SBOS705.png
Figure 18. On Response vs Frequency
MUX508 MUX509 C026_SBOS705.png
MUX509, VDD = 15 V, VSS = –15 V
Figure 20. Capacitance vs Source Voltage
MUX508 MUX509 C028_SBOS705.png
MUX509, VDD = 30 V, VSS = 0 V
Figure 22. Capacitance vs Source Voltage
MUX508 MUX509 C027_SBOS705.png
MUX509, VDD = 12 V, VSS = 0 V
Figure 24. Capacitance vs Source Voltage