ZHCSGB7A June   2017  – November 2017 OPA1641-Q1 , OPA1642-Q1

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      简化内部原理图
      2.      极为稳定的输入电容
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions: OPA1641-Q1
    2.     Pin Functions: OPA1642-Q1
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Phase Reversal Protection
      2. 7.3.2 Output Current Limit
      3. 7.3.3 EMI Rejection Ratio (EMIRR)
        1. 7.3.3.1 EMIRR IN+ Test Configuration
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operating Voltage
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Total Harmonic Distortion Measurements
      2. 8.1.2 Source Impedance and Distortion
      3. 8.1.3 Capacitive Load and Stability
      4. 8.1.4 Power Dissipation and Thermal Protection
      5. 8.1.5 Electrical Overstress
    2. 8.2 Typical Application
      1. 8.2.1 Single-Supply Electret Microphone Preamplifier for Speech
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 开发支持
        1. 11.1.1.1 TINA-TI(免费软件下载)
        2. 11.1.1.2 TI 高精度设计
        3. 11.1.1.3 WEBENCH® 滤波器设计器
    2. 11.2 文档支持
      1. 11.2.1 相关文档
    3. 11.3 相关链接
    4. 11.4 接收文档更新通知
    5. 11.5 社区资源
    6. 11.6 商标
    7. 11.7 静电放电警告
    8. 11.8 Glossary
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

EMI Rejection Ratio (EMIRR)

The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational amplifiers. An adverse effect that is common to many operational amplifiers is a change in the offset voltage as a result of RF signal rectification. An operational amplifier that is more efficient at rejecting this change in offset as a result of EMI has a higher EMIRR and is quantified by a decibel value. Measuring EMIRR can be performed in many ways, but this document provides the EMIRR IN+, which specifically describes the EMIRR performance when the RF signal is applied to the noninverting input pin of the operational amplifier. In general, only the noninverting input is tested for EMIRR for the following three reasons:

  • Operational amplifier input pins are known to be the most sensitive to EMI, and typically rectify RF signals better than the supply or output pins.
  • The noninverting and inverting operational amplifier inputs have symmetrical physical layouts and exhibit nearly matching EMIRR performance.
  • EMIRR is easier to measure on noninverting pins than on other pins because the noninverting input pin can be isolated on a printed-circuit-board (PCB). This isolation allows the RF signal to be applied directly to the noninverting input pin with no complex interactions from other components or connecting PCB traces.

A more formal discussion of the EMIRR IN+ definition and test method is provided in application report EMI Rejection Ratio of Operational Amplifiers, available for download at www.ti.com.

The EMIRR IN+ of the OPA164x-Q1 is plotted versus frequency in Figure 30. If available, any dual and quad operational amplifier device versions have nearly identical EMIRR IN+ performance. The OPA164x-Q1 unity-gain bandwidth is 11 MHz. EMIRR performance below this frequency denotes interfering signals that fall within the operational amplifier bandwidth.

OPA1641-Q1 OPA1642-Q1 C303_SBOS484.pngFigure 30. OPA164x-Q1 EMIRR vs Frequency

Table 1 lists the EMIRR IN+ values for the OPA164x-Q1 at particular frequencies commonly encountered in real-world applications. Applications listed in Table 1 can be centered on or operated near the particular frequency shown. This information can be of special interest to designers working with these types of applications, or working in other fields likely to encounter RF interference from broad sources, such as the industrial, scientific, and medical (ISM) radio band.

Table 1. OPA164x-Q1 EMIRR IN+ for Frequencies of Interest

FREQUENCY APPLICATION AND ALLOCATION EMIRR IN+
400 MHz Mobile radio, mobile satellite, space operation, weather, radar, UHF 53.1 dB
900 MHz GSM, radio communication and navigation, GPS (to 1.6 GHz), ISM,
aeronautical mobile, UHF
72.2 dB
1.8 GHz GSM, mobile personal comm. broadband, satellite, L-band 80.7 dB
2.4 GHz 802.11b/g/n, Bluetooth™, mobile personal comm., ISM, amateur radio and satellite, S-band 86.8 dB
3.6 GHz Radiolocation, aero comm./nav., satellite, mobile, S-band 91.7 dB
5 GHz 802.11a/n, aero communication and navigation, mobile communication,
space and satellite operation, C-band
96.6 dB