ZHCSA99C July   2012  – August 2016 OPA1662-Q1

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. 说明 (续)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics: VS = ±15 V
    6. 7.6 Electrical Characteristics: VS = 5 V
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Operating Voltage
      2. 8.3.2 Input Protection
      3. 8.3.3 Noise Performance
      4. 8.3.4 Basic Noise Calculations
      5. 8.3.5 Total Harmonic Distortion Measurements
      6. 8.3.6 Capacitive Loads
      7. 8.3.7 Electrical Overstress
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Power Dissipation
  12. 12器件和文档支持
    1. 12.1 文档支持
      1. 12.1.1 相关文档
    2. 12.2 接收文档更新通知
    3. 12.3 社区资源
    4. 12.4 商标
    5. 12.5 静电放电警告
    6. 12.6 Glossary
  13. 13机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage, (V+) – (V–) 40 V
Input voltage (V–) – 0.5 (V+) + 0.5 V
Input current (all pins except power-supply pins) ±10 mA
Output short-circuit(2) Continuous
Operating ambient temperature –40 125 °C
Junction temperature, TJ 200 °C
Storage temperature, Tstg –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Short-circuit to VS / 2 (ground in symmetrical dual supply setups), one amplifier per package.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) ±2000 V
Charged-device model (CDM), per AEC Q100-011 ±750
AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VS Supply voltage, (V+) – (V–) 3 (±1.5) 36 (±18) V
TA Operating ambient temperature –40 125 °C

Thermal Information

THERMAL METRIC(1) OPA1662-Q1 UNIT
D (SOIC) DGK (VSSOP)
8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 156.3 225.4 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 85.5 78.8 °C/W
RθJB Junction-to-board thermal resistance 64.9 110.5 °C/W
ψJT Junction-to-top characterization parameter 33.8 14.6 °C/W
ψJB Junction-to-board characterization parameter 64.3 108.5 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics: VS = ±15 V

TA = 25°C, VCM = VOUT = midsupply, and RL = 2 kΩ (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
AUDIO PERFORMANCE
THD+N Total harmonic distortion + noise G = 1, f = 1 kHz, VO = 3 VRMS 0.00006%
–124 dB
IMD Intermodulation distortion G = 1, VO = 3 VRMS SMPTE two-tone, 4:1 (60 Hz and 7 kHz) 0.00004%
–128 dB
DIM 30 (3-kHz square wave and 15-kHz sine wave) 0.00004%
–128 dB
CCIF twin-tone (19 kHz and 20 kHz) 0.00004%
–128 dB
FREQUENCY RESPONSE
GBW Gain-bandwidth product G = 1 22 MHz
SR Slew rate G = –1 17 V/µs
Full power bandwidth(1) VO = 1 VP 2.7 MHz
Overload recovery time G = –10 1 µs
Channel separation (dual and quad) f = 1 kHz –120 dB
NOISE
en Input voltage noise f = 20 Hz to 20 kHz 2.8 µVPP
Input voltage noise density f = 1 kHz 3.3 nV/√Hz
f = 100 Hz 5 nV/√Hz
In Input current noise density f = 1 kHz 1 pA/√Hz
f = 100 Hz 2 pA/√Hz
OFFSET VOLTAGE
VOS Input offset voltage VS = ±1.5 V to ±18 V ±0.5 ±1.5 mV
VS = ±1.5 V to ±18 V, TA = –40°C to 85°(2) 2 8 µV/°C
PSRR Power-supply rejection ratio VS = ±1.5 V to ±18 V 1 3 µV/V
INPUT BIAS CURRENT
IB Input bias current VCM = 0 V 600 1200 nA
IOS Input offset current VCM = 0 V ±25 ±100 nA
INPUT VOLTAGE
VCM Common-mode voltage (V–) + 0.5 (V+) – 1 V
CMRR Common-mode rejection ratio 106 114 dB
INPUT IMPEDANCE
Differential resistance 170
Differential capacitance 2 pF
Common-mode resistance 600
Common-mode capacitance 2.5 pF
OPEN-LOOP GAIN
AOL Open-loop voltage gain (V–) + 0.6 V ≤ VO ≤ (V+) – 0.6 V, RL = 2 kΩ 106 114 dB
OUTPUT
VOUT Output voltage RL = 2 kΩ (V–) + 0.6 (V+) – 0.6 V
IOUT Output current See Typical Characteristics mA
ZO Open-loop output impedance See Typical Characteristics Ω
ISC Short-circuit current(3) ±50 mA
CLOAD Capacitive load drive 200 pF
POWER SUPPLY
VS Specified voltage ±1.5 ±18 V
IQ Quiescent current
(per channel)
IOUT = 0 A 1.5 1.8 mA
IOUT = 0 A, TA = –40°C to 85°(2) 2 mA
TEMPERATURE
Specified temperature –40 85 °C
Full-power bandwidth = SR / (2π × VP), where SR = slew rate.
Specified by design and characterization.
One channel at a time.

Electrical Characteristics: VS = 5 V

TA = 25°C, VCM = VOUT = midsupply, and RL = 2 kΩ (unless otherwise noted)
PARAMETERTEST CONDITIONS MIN TYP MAX UNIT
AUDIO PERFORMANCE
THD+N Total harmonic distortion + noise G = 1, f = 1 kHz, VO = 3 VRMS 0.0001%
–120 dB
IMD Intermodulation distortion G = 1, VO = 3 VRMS SMPTE two-tone, 4:1 (60 Hz and 7 kHz) 0.00004%
–128 dB
DIM 30 (3-kHz square wave and 15-kHz sine wave) 0.00004%
–128 dB
CCIF twin-tone (19 kHz and 20 kHz) 0.00004%
–128 dB
FREQUENCY RESPONSE
GBW Gain-bandwidth product G = 1 20 MHz
SR Slew rate G = –1 13 V/µs
Full power bandwidth(1) VO = 1 VP 2 MHz
Overload recovery time G = –10 1 µs
Channel separation (dual and quad) f = 1 kHz –120 dB
NOISE
en Input voltage noise f = 20 Hz to 20 kHz 3.3 µVPP
Input voltage noise density f = 1 kHz 3.3 nV/√Hz
f = 100 Hz 5 nV/√Hz
In Input current noise density f = 1 kHz 1 pA/√Hz
f = 100 Hz 2 pA/√Hz
OFFSET VOLTAGE
VOS Input offset voltage VS = ±1.5 V to ±18 V ±0.5 ±1.5 mV
VS = ±1.5 V to ±18 V, TA = –40°C to 85°(2) 2 8 µV/°C
PSRR Power-supply rejection ratio VS = ±1.5 V to ±18 V 1 3 µV/V
INPUT BIAS CURRENT
IB Input bias current VCM = 0 V 600 1200 nA
IOS Input offset current VCM = 0 V ±25 ±100 nA
INPUT VOLTAGE
VCM Common-mode voltage (V–) + 0.5 (V+) – 1 V
CMRR Common-mode rejection ratio 86 100 dB
INPUT IMPEDANCE
Differential resistance 170
Differential capacitance 2 pF
Common-mode resistance 600
Common-mode capacitance 2.5 pF
OPEN-LOOP GAIN
AOL Open-loop voltage gain (V–) + 0.6 V ≤ VO ≤ (V+) – 0.6 V, RL = 2 kΩ 90 100 dB
OUTPUT
VOUT Output voltage RL = 2 kΩ (V–) + 0.6 (V+) – 0.6 V
IOUT Output current See \ mA
ZO Open-loop output impedance See Typical Characteristics Ω
ISC Short-circuit current(3) ±40 mA
CLOAD Capacitive load drive 200 pF
POWER SUPPLY
VS Specified voltage ±1.5 ±18 V
IQ Quiescent current (per channel) IOUT = 0 A 1.4 1.7 mA
IOUT = 0 A, TA = –40°C to 85°(2) 2 mA
TEMPERATURE
Specified temperature –40 85 °C
Full-power bandwidth = SR / (2π × VP), where SR = slew rate.
Specified by design and characterization.
One channel at a time.

Typical Characteristics

At TA = 25°C, VS = ±15 V, and RL = 2 kΩ (unless otherwise noted)
OPA1662-Q1 G001_SBOS489.png Figure 1. Input Voltage Noise Density and Input Current Noise Density vs Frequency
OPA1662-Q1 G003_SBOS489.gif Figure 3. Voltage Noise vs Source Resistance
OPA1662-Q1 G005_SBOS489.png Figure 5. Gain and Phase vs Frequency
OPA1662-Q1 G007_SBOS489.png Figure 7. THD+N Ratio vs Frequency
OPA1662-Q1 G009_SBOS489.png Figure 9. THD+N Ratio vs Frequency
OPA1662-Q1 G008_SBOS489.gif Figure 11. THD+N Ratio vs Frequency
OPA1662-Q1 G011_SBOS489.png Figure 13. THD+N Ratio vs Output Amplitude
OPA1662-Q1 G013_SBOS489.png Figure 15. Channel Separation vs Frequency
OPA1662-Q1 G015_SBOS489.gif Figure 17. Small-Signal Step Response
OPA1662-Q1 G041_SBOS489.gif Figure 19. Small-Signal Step Response
OPA1662-Q1 G017_SBOS489.gif Figure 21. Large-Signal Step Response
OPA1662-Q1 G018_SBOS489.gif Figure 23. Large-Signal Step Response
OPA1662-Q1 G019_SBOS489.gif Figure 25. Small-Signal Overshoot vs Capacitive Load
OPA1662-Q1 G034_SBOS489.gif Figure 27. Small-Signal Overshoot vs Capacitive Load
OPA1662-Q1 G021_SBOS489.gif Figure 29. Small-Signal Overshoot vs Feedback Capacitor
OPA1662-Q1 G036_SBOS489.png Figure 31. Phase Margin vs Capacitive Load
OPA1662-Q1 G023_SBOS489.png Figure 33. IB and IOS vs Temperature
OPA1662-Q1 G025_SBOS489.png Figure 35. Supply Current vs Temperature
OPA1662-Q1 G027_SBOS489.png Figure 37. Short-Circuit Current vs Temperature
OPA1662-Q1 G029_SBOS489.gif Figure 39. Positive Overload Recovery
OPA1662-Q1 G030_SBOS489.png Figure 41. Open-Loop Output Impedance vs Frequency
OPA1662-Q1 G002_SBOS489.gif Figure 2. 0.1-Hz to 10-Hz Noise
OPA1662-Q1 G004_SBOS489.png Figure 4. Maximum Output Voltage vs Frequency
OPA1662-Q1 G006_SBOS489.png Figure 6. Closed-Loop Gain vs Frequency
OPA1662-Q1 G038_SBOS489.png Figure 8. THD+N Ratio vs Frequency
OPA1662-Q1 G039_SBOS489.png Figure 10. THD+N Ratio vs Frequency
OPA1662-Q1 G010_SBOS489.gif Figure 12. THD+N Ratio vs Frequency
OPA1662-Q1 G012_SBOS489.gif Figure 14. Intermodulation Distortion vs Output Amplitude
OPA1662-Q1 G014_SBOS489.png Figure 16. CMRR and PSRR vs Frequency
(Referred to Input)
OPA1662-Q1 G040_SBOS489.gif Figure 18. Small-Signal Step Response
OPA1662-Q1 G016_SBOS489.gif Figure 20. Small-Signal Step Response
OPA1662-Q1 G032_SBOS489.gif Figure 22. Large-Signal Step Response
OPA1662-Q1 G035_SBOS489.gif Figure 24. Large-Signal Step Response
OPA1662-Q1 G020_SBOS489.gif Figure 26. Small-Signal Overshoot vs Capacitive Load
OPA1662-Q1 G033_SBOS489.gif Figure 28. Small-Signal Overshoot vs Capacitive Load
OPA1662-Q1 G037_SBOS489.png Figure 30. Percent Overshoot vs Capacitive Load
OPA1662-Q1 G022_SBOS489.png Figure 32. Open-Loop Gain vs Temperature
OPA1662-Q1 G024_SBOS489.png Figure 34. IB and IOS vs Common-Mode Voltage
OPA1662-Q1 G026_SBOS489.png Figure 36. Supply Current vs Supply Voltage
OPA1662-Q1 G028_SBOS489.gif Figure 38. Output Voltage vs Output Current
OPA1662-Q1 G031_SBOS489.gif Figure 40. Negative Overload Recovery
OPA1662-Q1 G042_SBOS489.gif Figure 42. No Phase Reversal