SBOS426D November   2008  – October 2016 OPA209 , OPA2209 , OPA4209

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information: OPA209
    5. 6.5 Thermal Information: OPA2209
    6. 6.6 Thermal Information: OPA4209
    7. 6.7 Electrical Characteristics
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Operating Voltage
      2. 7.3.2 Input Protection
      3. 7.3.3 Noise Performance
      4. 7.3.4 Basic Noise Calculations
      5. 7.3.5 Electrical Overstress
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
        1. 11.1.1.1 TINA-TI™ (Free Software Download)
        2. 11.1.1.2 DIP Adapter EVM
        3. 11.1.1.3 Universal Operational Amplifier EVM
        4. 11.1.1.4 TI Precision Designs
        5. 11.1.1.5 WEBENCH Filter Designer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Related Links
    4. 11.4 Receiving Notification of Documentation Updates
    5. 11.5 Community Resources
    6. 11.6 Trademarks
    7. 11.7 Electrostatic Discharge Caution
    8. 11.8 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Voltage Supply voltage, VS = (V+) – (V–) 40 V
Signal input pins(2) (V–) – 0.5 (V+) + 0.5 V
Current Signal input pins(2) –10 10 mA
Output short circuit(3) Continuous
Temperature Operating, TA –55 150 °C
Junction, TJ 200 °C
Storage, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) For input voltages beyond the power-supply rails, voltage or current must be limited.
(3) Short-circuit to ground, one amplifier per package.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±3000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VS Specified voltage ±2.25 ±18 V
Specified temperature –40 125 °C
TA Operating temperature –55 150 °C

6.4 Thermal Information: OPA209

THERMAL METRIC(1) OPA209 UNIT
DBV (SOT-23) D (SOIC) DGK (VSSOP)
5 PINS 8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 204.9 135.5 142.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 200 73.7 46.9 °C/W
RθJB Junction-to-board thermal resistance 113.1 61.9 63.5 °C/W
ψJT Junction-to-top characterization parameter 38.2 19.7 5.3 °C/W
ψJB Junction-to-board characterization parameter 104.9 54.8 62.8 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Thermal Information: OPA2209

THERMAL METRIC(1) OPA2209 UNIT
D (SOIC) DGK (VSSOP)
8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 134.3 132.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 72.1 38.5 °C/W
RθJB Junction-to-board thermal resistance 60.7 52.1 °C/W
ψJT Junction-to-top characterization parameter 18.2 2.4 °C/W
ψJB Junction-to-board characterization parameter 53.8 52.8 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.6 Thermal Information: OPA4209

THERMAL METRIC(1) OPA4209 UNIT
PW (TSSOP)
14 PINS
RθJA Junction-to-ambient thermal resistance 112.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 26.1 °C/W
RθJB Junction-to-board thermal resistance 61 °C/W
ψJT Junction-to-top characterization parameter 0.7 °C/W
ψJB Junction-to-board characterization parameter 59.2 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.7 Electrical Characteristics

at VS = ±2.25 V to ±18 V, TA = 25°C, RL = 10 kΩ connected to midsupply, and VCM = VOUT = midsupply (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OFFSET VOLTAGE
VOS Input offset voltage VS = ±15 V, VCM = 0 V ±35 ±150 µV
dVOS/dT Input offset voltage drift TA = –40°C to 125°C 1 3 µV/°C
PSRR vs power supply VS = ±2.25 V to ±18 V TA = 25°C 0.05 0.5 µV/V
TA = –40°C to 125°C 1
Channel separation DC (dual and quad versions) 1 µV/V
INPUT BIAS CURRENT
IB Input bias current VCM = 0 V TA = 25°C ±1 ±4.5 nA
TA = –40°C to 85°C ±8
TA = –40°C to 125°C ±15
IOS Input offset current VCM = 0 V TA = 25°C ±0.7 ±4.5 nA
TA = –40°C to 85°C ±8
TA = –40°C to 125°C ±15
NOISE
en Input voltage noise f = 0.1 Hz to 10 Hz 0.13 µVPP
Noise density f = 10 Hz 3.3 nV/√Hz
f = 100 Hz 2.25
f = 1 kHz 2.2
In Input current noise density f = 1 kHz 500 fA/√Hz
INPUT VOLTAGE RANGE
VCM Common-mode voltage range (V–) + 1.5 (V+) – 1.5 V
CMRR Common-mode rejection ratio (V–) + 1.5 V < VCM < (V+) – 1.5 V, TA = –40°C to 125°C 120 130 dB
INPUT IMPEDANCE
Differential 200 || 4 kΩ || pF
Common-mode 109 || 2 Ω || pF
OPEN-LOOP GAIN
AOL Open-loop voltage gain (V–) + 0.2 V < VO < (V+) – 0.2 V,
RL = 10 kΩ
TA = 25°C 126 132 dB
TA = –40°C to 125°C 120
(V–) + 0.6 V < VO < (V+) – 0.6 V,
RL = 600 Ω(1)
TA = 25°C 114 120
TA = –40°C to 125°C 110
FREQUENCY RESPONSE
GBW Gain bandwidth product 18 MHz
SR Slew rate 6.4 V/µs
Φm Phase margin RL = 10 kΩ, CL = 25 pF 80 °
tS Settling time 0.1%, G = –1, 10-V step, CL = 100 pF 2.1 µs
0.0015% (16-bit), G = –1, 10-V step, CL = 100 pF 2.6
Overload recovery time G = –1 < 1 µs
THD+N Total harmonic distortion + noise G = +1, f = 1 kHz, VO = 20 VPP, 600 Ω 0.000025%
OUTPUT
Voltage output swing RL = 10 kΩ, AOL > 130 dB (V–) + 0.2 (V+) – 0.2 V
RL = 600 Ω, AOL > 114 dB (V–) + 0.6 (V+) – 0.6
RL = 10 kΩ, AOL > 120 dB, TA = –40°C to 125°C (V–) + 0.2 (V+) – 0.2
ISC Short-circuit current VS = ±18 V ±65 mA
CLOAD Capacitive load drive
(stable operation)
See Typical Characteristics
ZO Open-loop output impedance See Typical Characteristics
POWER SUPPLY
IQ Quiescent current
(per amplifier)
IO = 0 A TA = 25°C 2.2 2.5 mA
TA = –40°C to 125°C 3.25
(1) See Absolute Maximum Ratings for additional information.

6.8 Typical Characteristics

at TA = 25°C, VS = ±18 V, RL = 10 kΩ connected to midsupply, and VCM = VOUT = midsupply (unless otherwise noted)
OPA209 OPA2209 OPA4209 tc_v_noise-frq_bos426.gif Figure 1. Input Voltage Noise Density vs Frequency
OPA209 OPA2209 OPA4209 tc_thd-n-frq_bos426.gif Figure 3. Total Harmonic Distortion + Noise Ratio
vs Frequency
OPA209 OPA2209 OPA4209 tc_noise_bos426.gif Figure 5. 0.1-Hz to 10-Hz Noise
OPA209 OPA2209 OPA4209 tc_cmrr-frq_bos426.gif Figure 7. Common-Mode Rejection Ratio
vs Frequency
OPA209 OPA2209 OPA4209 tc_gain-frq_bos426.gif Figure 9. Open-Loop Gain and Phase vs Frequency
OPA209 OPA2209 OPA4209 tc_offset_histo_bos426.gif Figure 11. Offset Voltage Production Distribution
OPA209 OPA2209 OPA4209 tc_ib_ios-tmp_bos426.gif
Figure 13. Input Bias and Input Offset Currents
vs Temperature
OPA209 OPA2209 OPA4209 tc_vos-time_bos426.gif Figure 15. Input Offset Voltage vs Time
OPA209 OPA2209 OPA4209 tc_ib_ios-common_bos426.gif Figure 17. Input Bias and Input Offset Currents
vs Common-Mode Voltage
OPA209 OPA2209 OPA4209 tc_iq-tmp_bos426.gif Figure 19. Quiescent Current vs Temperature
OPA209 OPA2209 OPA4209 tc_isc-tmp_bos426.gif Figure 21. Short-Circuit Current vs Temperature
OPA209 OPA2209 OPA4209 tc_small_sig_g1_bos426.gif Figure 23. Small-Signal Step Response
OPA209 OPA2209 OPA4209 tc_large_sig_g1_bos426.gif Figure 25. Large-Signal Step Response
OPA209 OPA2209 OPA4209 tc_no_phase_bos426.gif Figure 27. No Phase Reversal
OPA209 OPA2209 OPA4209 tc_pos_ovolt_bos426.gif Figure 29. Positive Overvoltage Recovery
OPA209 OPA2209 OPA4209 tc_i_noise-frq_bos426.gif Figure 2. Input Current Noise Density vs Frequency
OPA209 OPA2209 OPA4209 tc_thd-n-amplitude_bos426.gif Figure 4. Total Harmonic Distortion + Noise Ratio
vs Amplitude
OPA209 OPA2209 OPA4209 tc_psrr-frq_bos426.gif Figure 6. Power-Supply Rejection Ratio
vs Frequency (Referred to Input)
OPA209 OPA2209 OPA4209 tc_imp-frq_bos426.gif Figure 8. Open-Loop Output Impedance
vs Frequency
OPA209 OPA2209 OPA4209 tc_gain-tmp_bos426.gif Figure 10. Open-Loop Gain vs Temperature
OPA209 OPA2209 OPA4209 tc_drift_histo_bos426.gif Figure 12. Offset Voltage Drift Production Distribution
OPA209 OPA2209 OPA4209 tc_vos-common_bos426.gif Figure 14. Input Offset Voltage
vs Common-Mode Voltage
OPA209 OPA2209 OPA4209 tc_ios-vs_bos426.gif Figure 16. Input Offset Current vs Supply Voltage
OPA209 OPA2209 OPA4209 tc_ib-vs_bos426.gif
Figure 18. Input Bias Current vs Supply Voltage
OPA209 OPA2209 OPA4209 tc_iq-vs_bos426.gif Figure 20. Quiescent Current vs Supply Voltage
OPA209 OPA2209 OPA4209 tc_vo-io_bos426.gif Figure 22. Output Voltage vs Output Current
OPA209 OPA2209 OPA4209 tc_small_sig_g-1_bos426.gif Figure 24. Small-Signal Step Response
OPA209 OPA2209 OPA4209 tc_large_sig_g-1_bos426.gif Figure 26. Large-Signal Step Response
OPA209 OPA2209 OPA4209 tc_neg_oload_bos426.gif Figure 28. Negative Overload Recovery
OPA209 OPA2209 OPA4209 tc_overshoot-load_bos426.gif Figure 30. Small-Signal Overshoot
vs Capacitive Load