ZHCSJ65A December   2018  – December 2019 OPA462

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      OPA462 方框图
      2.      最大输出电压与频率间的关系
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics: Table of Graphs
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Status Flag Pin
      2. 7.3.2 Thermal Protection
      3. 7.3.3 Current Limit
      4. 7.3.4 Enable and Disable
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 High DAC Gain Stage for Semiconductor Test Equipment
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
      2. 8.2.2 Improved Howland Current Pump for Bioimpedance Measurements in Multiparameter Patient Monitors
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Thermally-Enhanced PowerPAD Package
      2. 10.1.2 PowerPAD Integrated Circuit Package Layout Guidelines
      3. 10.1.3 Pin Leakage
      4. 10.1.4 Thermal Protection
      5. 10.1.5 Power Dissipation
      6. 10.1.6 Heat Dissipation
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 开发支持
        1. 11.1.1.1 TINA-TI™(免费软件下载)
        2. 11.1.1.2 TI 高精度设计
        3. 11.1.1.3 WEBENCH滤波器设计器
    2. 11.2 文档支持
      1. 11.2.1 相关文档
    3. 11.3 支持资源
    4. 11.4 商标
    5. 11.5 静电放电警告
    6. 11.6 Glossary
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Typical Characteristics

at TA = 25°C, VS = ±90 V, and RL = 10 kΩ connected to GND, output enabled (unless otherwise noted)
OPA462 WLABNH_1_OPA462_vos_production_distribution.gif
Figure 1. Offset Voltage Production Distribution at 25°C
OPA462 WLOE3N_1_OPA462_vos_histogram_n40c.gif
Figure 3. Offset Voltage Distribution at –40°C
OPA462 WLGFZS_1_OPA462_vos_vs_temperature_5_typ.gif
Figure 5. Offset Voltage vs Temperature
OPA462 WLHE2X_1_OPA462_vos_vs_vcm_n90_n85.gif
Figure 7. Offset Voltage vs Common-Mode Voltage
(Low VCM)
OPA462 WL8FVI_1_OPA462_vos_vs_vs_0_12.gif
Figure 9. Offset Voltage vs Power Supply (Low Supply)
OPA462 WL4SIC_1_OPA462_vos_vs_vout_n90_n80.gif
Figure 11. Offset Voltage vs Output Voltage (Low Output)
OPA462 WL1T5A_1_OPA462_cmrr_vs_temperature.gif
Figure 13. CMRR vs Temperature
OPA462 WLHC07_1_OPA462_psrr_vs_temperature.gif
Figure 15. PSRR vs Temperature
OPA462 EMIRR_Mod.gif
Figure 17. EMIRR vs Frequency
OPA462 WLVHXF_1_OPA462_negative_input_bias_current.gif
Figure 19. Input Bias Current Production Distribution at 25℃
OPA462 WLUIMP_1_OPA462_ib_vs_vcm.gif
Figure 21. IB vs Common-Mode Voltage
OPA462 WLGTQD_1_OPA462_StatusFlag_OutputCurrentLimit.gif
Figure 23. Current Limit Response
OPA462 WL0XK1_1_OPA462_aol_vs_output_voltage.gif
Figure 25. Open-Loop Gain vs Output Voltage
OPA462 WL5J53_1_Open_Loop_Output_Impedance.gif
Figure 27. Open-Loop Output Impedance vs Frequency
OPA462 WLLRUJ_1_OPA462_FullPowerBandwidth.gif
Figure 29. Maximum Output Voltage vs Frequency
OPA462 WL1B3B_1_OPA462_negative_output_voltage_vs_output_current.gif
Figure 31. Negative Output Voltage vs Output Current
OPA462 WLD9JA_1_OPA462_NegativeOverload.gif
Figure 33. Negative Overload Recovery
OPA462 WLRG6D_1_SettlingTime.gif
Figure 35. Settling Time
OPA462 WL1ARU_1_OPA462_InvertingOvershootCapload.gif
G = –1
Figure 37. Small-Signal Overshoot vs Capacitive Load
OPA462 WLYZ1Y_1_OPA462_G-1_SmallStep.gif
G = –1
Figure 39. Small-Signal Step Response
OPA462 WLF5J1_1_OPA462_G-1_LargeStep.gif
G = –1
Figure 41. Large-Signal Step Response
OPA462 SlewRateVsAmplitude.gif
Figure 43. Slew Rate vs Output Step Size
OPA462 SlewRateVsSupply_NonInverting.gif
Figure 45. Slew Rate vs Supply Voltage (Noninverting)
OPA462 WL0T2G_1_OPA462_THDN_Vs_Frequency_G20.gif
G = 20
Figure 47. THD+N Ratio vs Frequency
OPA462 WLR5SX_1_OPA462_THDN_Vs_Amplitude_G20.gif
G = 20
Figure 49. THD+N Ratio vs Output Amplitude
OPA462 WLU6Z2_1_OPA462_VoltageNoiseSpectralDensity.gif
Figure 51. Input Voltage Noise Spectral Density
OPA462 WLIJ0V_1_OPA462_iq_production_distribution.gif
Figure 53. Quiescent Current Production Distribution at 25℃
OPA462 WLF76R_1_OPA462_iq_vs_temperature.gif
Figure 55. Quiescent Current vs Temperature
OPA462 WLIAFX_1_OPA462_iq_vs_enable_voltage.gif
Figure 57. Quiescent Current vs Enable Voltage
OPA462 WL08WJ_1_OPA462_status_flag_current_vs_status_flag_voltage_ed_com_delta.gif
Figure 59. Status Flag Current vs Voltage
OPA462 WLH5RD_1_OPA462_vos_histogram_85c.gif
Figure 2. Offset Voltage Distribution at 85°C
OPA462 WLRZ7V_1_OPA462_vos_drift_histogram.gif
Figure 4. Offset Voltage Drift Distribution from –40°C to +85°C
OPA462 WL9F3F_1_OPA426_vos_warmup.gif
Figure 6. Offset Voltage Warmup
OPA462 WL0P53_1_OPA462_vos_vs_vcm_85_90.gif
Figure 8. Offset Voltage vs Common-Mode Voltage
(High VCM)
OPA462 WLIX2N_1_OPA462_vos_vs_vs_6_90.gif
Figure 10. Offset Voltage vs Power Supply (High Supply)
OPA462 WLLJ2C_1_OPA462_vos_vs_vout_80_90.gif
Figure 12. Offset Voltage vs Output Voltage (High Output)
OPA462 WLU0PZ_1_OPA462_cmrr_vs_frequency.gif
Figure 14. CMRR vs Frequency
OPA462 WLIPSO_1_OPA462_PSRR_Vs_Frequency.gif
Figure 16. PSRR vs Frequency
OPA462 WL6JVK_1_OPA462_NoPhaseReversal.gif
Figure 18. No Phase Reversal
OPA462 WLHX9Y_1_OPA462_ib_vs_temp_pos_neg_os_6_90.gif
Figure 20. IB vs Temperature
OPA462 EnableResponse.gif
Figure 22. Enable Response
OPA462 WLFKES_1_OPA462_aol_vs_temperature.gif
Figure 24. Open-Loop Gain vs Temperature
OPA462 WLCL2E_1_OPA462_Aol_Phase.gif
Figure 26. Open-Loop Gain and Phase vs Frequency
OPA462 WLIKUI_1_OPA462_ClosedLoopGain.gif
Figure 28. Closed-Loop Gain vs Frequency
OPA462 WLVK7J_1_OPA462_positive_output_voltage_vs_output_current.gif
Figure 30. Positive Output Voltage vs Output Current
OPA462 WLQAAP_1_OPA462_isc_vs_temp.gif
Figure 32. Short-Circuit Current vs Temperature
OPA462 WLD9JA_1_OPA462_PositiveOverload.gif
Figure 34. Positive Overload Recovery
OPA462 WLEQOT_1_OPA462_PhaseMarginVsCapload.gif
Figure 36. Phase Margin vs Capacitive Load
OPA462 WLWIXK_1_OPA462_NonInvertingOvershootCapload.gif
G = +1
Figure 38. Small-Signal Overshoot vs Capacitive Load
OPA462 WLYZ1Y_1_OPA462_G1_SmallStep.gif
G = +1
Figure 40. Small-Signal Step Response
OPA462 WLF5J1_1_OPA462_G1_LargeStep.gif
G = +1
Figure 42. Large-Signal Step Response
OPA462 SlewRateVsSupply_Inverting.gif
Figure 44. Slew Rate vs Supply Voltage (Inverting)
OPA462 WL0T2G_1_OPA462_THDN_Vs_Frequency_G10.gif
G = 10
Figure 46. THD+N Ratio vs Frequency
OPA462 WLR5SX_1_OPA462_THDN_Vs_Amplitude_G10.gif
G = 10
Figure 48. THD+N Ratio vs Output Amplitude
OPA462 WLNZM5_1_p1_10Hz_Noise.gif
Figure 50. 0.1-Hz to 10-Hz Noise
OPA462 WLPUQG_1_Current_Noise.gif
Figure 52. Current Noise Density
OPA462 WL91HM_1_OPA462_iq_vs_supply.gif
Figure 54. Quiescent Current vs Supply Voltage
OPA462 WLVR3W_1_OPA462_status_flag_voltage_vs_temperature.gif
Figure 56. Status Flag Voltage vs Temperature
OPA462 WLZ521_1_OPA462_enable_current_vs_enable_voltage.gif
Figure 58. Enable Current vs Enable Voltage