ZHCSTX5B September   2000  – April 2024 OPA627 , OPA637

PRODMIX  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information: OPA627
    5. 5.5 Thermal Information: OPA637
    6. 5.6 Electrical Characteristics: OPA627BU, OPA627AU
    7. 5.7 Electrical Characteristics: OPA627AM, OPA627BM, OPA627SM
    8. 5.8 Electrical Characteristics: OPA637
    9. 5.9 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Offset Voltage Adjustment
      2. 6.3.2 Noise Performance
      3. 6.3.3 Input Bias Current
      4. 6.3.4 Phase-Reversal Protection
      5. 6.3.5 Output Overload
      6. 6.3.6 Capacitive Loads
      7. 6.3.7 Input Protection
      8. 6.3.8 EMI Rejection Ratio (EMIRR)
        1. 6.3.8.1 EMIRR IN+ Test Configuration
      9. 6.3.9 Settling Time
    4. 6.4 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
      3. 7.2.3 Application Curve
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
        1. 8.1.1.1 TINA-TI™ 仿真软件(免费下载)
        2. 8.1.1.2 Analog Filter Designer
        3. 8.1.1.3 TI 参考设计
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
    3. 8.3 接收文档更新通知
    4. 8.4 支持资源
    5. 8.5 Trademarks
    6. 8.6 静电放电警告
    7. 8.7 术语表
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

EMI Rejection Ratio (EMIRR)

The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational amplifiers. An adverse effect that is common to many operational amplifiers is a change in the offset voltage as a result of RF signal rectification. An operational amplifier that is more efficient at rejecting this change in offset as a result of EMI has a higher EMIRR and is quantified by a decibel value. Measuring EMIRR can be performed in many ways, but this report provides the EMIRR IN+, which specifically describes the EMIRR performance when the RF signal is applied to the noninverting input pin of the operational amplifier. In general, only the noninverting input is tested for EMIRR for the following three reasons:

  • Operational amplifier input pins are known to be the most sensitive to EMI, and typically rectify RF signals better than the supply or output pins.
  • The noninverting and inverting operational amplifier inputs have symmetrical physical layouts and exhibit nearly matching EMIRR performance.
  • EMIRR is easier to measure on noninverting pins than on other pins because the noninverting input terminal can be isolated on a printed-circuit-board (PCB). This isolation allows the RF signal to be applied directly to the noninverting input terminal with no complex interactions from other components or connecting PCB traces.

A more formal discussion of the EMIRR IN+ definition and test method is provided in the EMI Rejection Ratio of Operational Amplifiers application note, available for download at www.ti.com.

The EMIRR IN+ of the OPA627 is plotted versus frequency (see Figure 6-8). If available, any dual and quad op amp device versions have nearly similar EMIRR IN+ performance. The OPA627 (SOIC package) unity-gain bandwidth is 45MHz. EMIRR performance below this frequency denotes interfering signals that fall within the operational amplifier bandwidth.

OPA627 OPA637 OPA627 (SOIC packages) EMIRR IN+ vs Frequency Figure 6-8 OPA627 (SOIC packages) EMIRR IN+ vs Frequency

Table 6-1 shows the EMIRR IN+ values for the OPA627 (SOIC package) at particular frequencies commonly encountered in real-world applications. Applications listed in Table 6-1 can be centered on or operated near the particular frequency shown. This information can be of special interest to designers working with these types of applications, or working in other fields likely to encounter RF interference from broad sources, such as the industrial, scientific, and medical (ISM) radio band.

Table 6-1 OPA627 (SOIC packages) EMIRR IN+ for Frequencies of Interest
FREQUENCY APPLICATION OR ALLOCATION EMIRR IN+
400MHz Mobile radio, mobile satellite and space operation, weather, radar, UHF 39dB
900MHz GSM, radio communication/navigation/GPS (to 1.6GHz), ISM, aeronautical mobile, UHF 40dB
1.8GHz GSM, mobile personal communication, broadband, satellite, L-band 50dB
2.4GHz 802.11b/g/n, Bluetooth™, mobile comm, ISM, amateur radio and satellite, S-band 70dB
3.6GHz Radiolocation, aero communication and navigation, satellite, mobile, S-band 85dB
5GHz 802.11a/n, aero comm and nav, mobile comm, space and satellite operation, C-band 85dB