SBOS342C December 2008 – November 2015 OPA659
PRODUCTION DATA.
MIN | MAX | UNIT | ||
---|---|---|---|---|
Power Supply Voltage VS+ to VS– | ±6.5 | V | ||
Input Voltage | ±VS | V | ||
Input Current | 100 | mA | ||
Output Current | 100 | mA | ||
Continuous Power Dissipation | See Thermal Information | |||
Operating Free Air Temperature, TA | –40 | 85 | °C | |
Maximum Junction Temperature, TJ | 150 | °C | ||
Maximum Junction Temperature, TJ (continuous operation for long term reliability) | 125 | °C | ||
Storage Temperature, Tstg | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±4000 | V |
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±1000 | |||
Machine model (MM) | ±200 |
MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|
VS | Total supply voltage | 7 | 12 | 13 | V |
TA | Ambient temperature | –40 | 25 | 85 | °C |
THERMAL METRIC(1) | OPA659 | UNIT | ||
---|---|---|---|---|
DRB (VSON) | DRV (SOT23) | |||
8 PINS | 5 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 56.3 | 209 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 63.7 | 124 | °C/W |
RθJB | Junction-to-board thermal resistance | 31.9 | 38.1 | °C/W |
ψJT | Junction-to-top characterization parameter | 3.2 | 15 | °C/W |
ψJB | Junction-to-board characterization parameter | 32.1 | 37.2 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | 15.3 | — | °C/W |
PARAMETER | TEST CONDITIONS | TEST LEVEL(1) | MIN | TYP | MAX | UNIT | |||
---|---|---|---|---|---|---|---|---|---|
AC PERFORMANCE | |||||||||
Small-Signal Bandwidth | VO = 200 mVPP, G = 1 V/V | C | 650 | MHz | |||||
VO = 200 mVPP, G = 2 V/V | C | 335 | MHz | ||||||
VO = 200 mVPP, G = 5 V/V | C | 75 | MHz | ||||||
VO = 200 mVPP, G = 10 V/V | C | 35 | MHz | ||||||
Gain Bandwidth Product | G > 10 V/V | C | 350 | MHz | |||||
Bandwidth for 0.1dB Flatness | G = 2 V/V, VO = 2VPP | C | 55 | MHz | |||||
Large-Signal Bandwidth | VO = 2 VPP, G = 1 V/V | B | 575 | MHz | |||||
Slew Rate | VO = 4-V Step, G = 1 V/V | B | 2550 | V/μs | |||||
Rise and Fall Time | VO = 4-V Step, G = 1 V/V | C | 1.3 | ns | |||||
Settling Time to 1% | VO = 4-V Step, G = 1 V/V | C | 8 | ns | |||||
Pulse Response Overshoot | VO = 4-V Step, G = 1 V/V | C | 12% | ||||||
Harmonic Distortion, 2nd harmonic | VO = 2 VPP, G = 1 V/V, f = 10 MHz | C | –79 | dBc | |||||
Harmonic Distortion, 3rd harmonic | VO = 2 VPP, G = 1 V/V, f = 10 MHz | C | –100 | dBc | |||||
Intermodulation Distortion, 2nd intermodulation | VO= 2 VPP Envelope (each tone 1 VPP), G = 2 V/V, f1 = 10 MHz, f2 = 11 MHz |
C | –72 | dBc | |||||
Intermodulation Distortion, 3rd intermodulation | VO= 2 VPP Envelope (each tone 1 VPP), G = 2 V/V, f1 = 10 MHz, f2 = 11 MHz |
C | –96 | dBc | |||||
Input Voltage Noise | f > 100 kHz | C | 8.9 | nV/√Hz | |||||
Input Current Noise | f < 10 MHz | C | 1.8 | fA/√Hz | |||||
DC PERFORMANCE | |||||||||
Open-Loop Voltage Gain (AOL) | TA = 25°C, VCM = 0 V, RL = 100 Ω | A | 52 | 58 | dB | ||||
TA = –40°C to 85°C, VCM = 0 V, RL = 100 Ω | B | 49 | 55 | dB | |||||
Input Offset Voltage | TA = 25°C, VCM = 0 V | A | ±1 | ±5 | mV | ||||
TA = –40°C to 85°C, VCM = 0 V DRB package | DRB package | B | ±1.5 | ±7.6 | mV | ||||
DBV package | B | ±1.5 | ±8.9 | mV | |||||
Average input-offset voltage drift(2) | TA = –40°C to 85°C, VCM = 0 V | DRB package | B | ±10 | ±40 | μV/°C | |||
DBV package | B | ±10 | ±60 | μV/°C | |||||
Input Bias Current | TA = 25°C, VCM = 0 V | A | ±10 | ±50 | pA | ||||
TA = 0°C to 70°C, VCM = 0 V | B | ±240 | ±1200 | pA | |||||
TA = –40°C to 85°C, VCM = 0 V | B | ±640 | ±3200 | pA | |||||
Average input bias current drift | TA = 0°C to 70°C, VCM = 0 V | B | ±5 | ±26 | pA/°C | ||||
TA = –40°C to 85°C, VCM = 0 V | B | ±7 | ±34 | pA/°C | |||||
Input Offset Current | TA = 25°C, VCM = 0 V | A | ±5 | ±25 | pA | ||||
TA = 0°C to 70°C, VCM = 0 V | B | ±120 | ±600 | pA | |||||
TA = –40°C to 85°C, VCM = 0 V | B | ±320 | ±1600 | pA | |||||
INPUT | |||||||||
Common-Mode Input Range(3) | TA = 25°C | A | ±3 | ±3.5 | V | ||||
TA = –40°C to 85°C | B | ±2.87 | ±3.37 | V | |||||
Common-Mode Rejection Ratio | TA = 25°C, VCM = ±0.5 V | A | 68 | 70 | dB | ||||
TA = –40°C to 85°C, VCM = ±0.5 V | B | 64 | 66 | dB | |||||
Input Impedance | |||||||||
Input impedance, differential | C | 1012 ∥ 1 | Ω ∥ pF | ||||||
Input impedance, common-mode | C | 1012 ∥ 2.5 | Ω ∥ pF | ||||||
OUTPUT | |||||||||
Output Voltage Swing | TA = 25°C, | No Load | A | ±4.6 | ±4.8 | V | |||
RL = 100 Ω | A | ±3.8 | ±4 | V | |||||
TA = –40°C to 85°C | No Load | B | ±4.45 | ±4.65 | V | ||||
RL = 100 Ω | B | ±3.65 | ±3.85 | V | |||||
Output Current, Sourcing, Sinking | TA = 25°C | A | ±60 | ±70 | mA | ||||
TA = –40°C to 85°C | B | ±56 | ±65 | mA | |||||
Closed-Loop Output Impedance | G = 1 V/V, f = 100 kHz | C | 0.04 | Ω | |||||
POWER SUPPLY | |||||||||
Operating Voltage | B | ±3.5 | ±6 | ±6.5 | V | ||||
Quiescent Current | TA = 25°C | A | 30.5 | 32 | 33.5 | mA | |||
TA = –40°C to 85°C | B | 28.3 | 35.7 | mA | |||||
Power-Supply Rejection Ratio (PSRR) | TA = 25°C, VS = ±5.5 V to ±6.5 V | A | 58 | 62 | dB | ||||
TA = –40°C to 85°C, VS = ±5.5 V to ±6.5 V | A | 56 | 60 | dB |
TITLE | FIGURE | |
---|---|---|
Noninverting Small-Signal Frequency Response | VO = 200 mVPP | Figure 1 |
Noninverting Large-Signal Frequency Response | VO = 2 VPP | Figure 2 |
Noninverting Large-Signal Frequency Response | VO = 6 VPP | Figure 3 |
Inverting Small-Signal Frequency Response | VO = 200 mVPP | Figure 4 |
Inverting Large-Signal Frequency Response | VO = 2 VPP | Figure 5 |
Inverting Large-Signal Frequency Response | VO = 6 VPP | Figure 6 |
Noninverting Transient Response | 0.5-V Step | Figure 7 |
Noninverting Transient Response | 2-V Step | Figure 8 |
Noninverting Transient Response | 5-V Step | Figure 9 |
Inverting Transient Response | 0.5-V Step | Figure 10 |
Inverting Transient Response | 2-V Step | Figure 11 |
Inverting Transient Response | 5-V Step | Figure 12 |
Harmonic Distortion vs Frequency | Figure 13 | |
Harmonic Distortion vs Noninverting Gain | Figure 14 | |
Harmonic Distortion vs Inverting Gain | Figure 15 | |
Harmonic Distortion vs Load Resistance | Figure 16 | |
Harmonic Distortion vs Output Voltage | Figure 17 | |
Harmonic Distortion vs ±Supply Voltage | Figure 18 | |
Two-Tone, Second- and Third-Order Intermodulation Distortion vs Frequency | Figure 19 | |
Overdrive Recovery | Gain = 2 V/V | Figure 20 |
Overdrive Recovery | Gain = –2 V/V | Figure 21 |
Input-Referred Voltage Spectral Noise Density | Figure 22 | |
Common-Mode Rejection Ratio and Power-Supply Rejection Ratio vs Frequency | Figure 23 | |
Recommended RISO vs Capacitive Load | Figure 24 | |
Frequency Response vs Capacitive Load | Figure 25 | |
Open-Loop Gain and Phase | Figure 26 | |
Closed-Loop Output Impedance vs Frequency | Figure 27 | |
Transimpedance Gain vs Frequency | CD = 10 pF | Figure 28 |
Transimpedance Gain vs Frequency | CD = 22 pF | Figure 29 |
Transimpedance Gain vs Frequency | CD = 47 pF | Figure 30 |
Transimpedance Gain vs Frequency | CD = 100 pF | Figure 31 |
Maximum/Minimum ±VOUT vs RLOAD | Figure 32 | |
Slew Rate vs VOUT Step | Figure 33 |