ZHCS020J January   2011  – March 2021 OPA2835 , OPA835

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Device Comparision Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information: OPA835
    5. 7.5 Thermal Information: OPA2835
    6. 7.6 Electrical Characteristics: VS = 2.7 V
    7. 7.7 Electrical Characteristics: VS = 5 V
    8. 7.8 Typical Characteristics: VS = 2.7 V
    9. 7.9 Typical Characteristics: VS = 5 V
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Input Common-Mode Voltage Range
      2. 8.3.2 Output Voltage Range
      3. 8.3.3 Power-Down Operation
      4. 8.3.4 Low-Power Applications and the Effects of Resistor Values on Bandwidth
      5. 8.3.5 Driving Capacitive Loads
    4. 8.4 Device Functional Modes
      1. 8.4.1 Split-Supply Operation (±1.25 V to ±2.75 V)
      2. 8.4.2 Single-Supply Operation (2.5 V to 5.5 V)
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1  Noninverting Amplifier
      2. 9.1.2  Inverting Amplifier
      3. 9.1.3  Instrumentation Amplifier
      4. 9.1.4  Attenuators
      5. 9.1.5  Single-Ended to Differential Amplifier
      6. 9.1.6  Differential to Single-Ended Amplifier
      7. 9.1.7  Differential-to-Differential Amplifier
      8. 9.1.8  Gain Setting With OPA835 RUN Integrated Resistors
      9. 9.1.9  Pulse Application With Single-Supply
      10. 9.1.10 ADC Driver Performance
    2. 9.2 Typical Application
      1. 9.2.1 Audio Frequency Performance
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Active Filters
        1. 9.2.2.1 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Related Links
    4. 12.4 Receiving Notification of Documentation Updates
    5. 12.5 支持资源
    6. 12.6 Trademarks
    7. 12.7 Electrostatic Discharge Caution
    8. 12.8 术语表
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

ADC Driver Performance

The OPA835 device provides excellent performance when driving high-performance delta-sigma (ΔΣ) and successive-approximation-register (SAR) ADCs in low-power audio and industrial applications.

To show achievable performance, the OPA835 device is tested as the drive amplifier for the ADS8326 device. The ADS8326 device is a 16-bit, micro power, SAR ADC with pseudodifferential inputs and sample rates up to
250 kSPS. The device offers excellent noise and distortion performance in a small 8-pin SOIC or VSSOP (MSOP) package. Low power and small size make the ADS8326 and OPA835 devices an ideal solution for portable and battery-operated systems, remote data-acquisition modules, simultaneous multichannel systems, and isolated data acquisition.

With the circuit shown in Figure 9-9 to test the performance, Figure 9-10 shows the spectral performance with a 10-kHz input frequency. The tabulated AC results are in Table 9-3.

GUID-9CBEECE3-68AC-422C-BFB0-83FCBD82AE88-low.gif Figure 9-9 OPA835 and ADS8326 Test Circuit
GUID-BBC12270-4A50-4FF6-A178-70EB68854CC4-low.gif Figure 9-10 ADS8326 and OPA835 10-kHz FFT
Table 9-3 AC Analysis
TONE (Hz)SIGNAL (dBFS)SNR (dBc)THD (dBc)SINAD (dBc)SFDR (dBc)
10k–0.8581.9–87.580.889.9