ZHCSGM4D August   2017  – September 2024 OPA838

PRODMIX  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics VS = 5 V
    6. 6.6 Electrical Characteristics VS = 3 V
    7. 6.7 Typical Characteristics: VS = 5 V
    8. 6.8 Typical Characteristics: VS = 3 V
    9. 6.9 Typical Characteristics: Over Supply Range
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Input Common-Mode Voltage Range
      2. 7.3.2 Output Voltage Range
      3. 7.3.3 Power-Down Operation
      4. 7.3.4 Trade-Offs in Selecting The Feedback Resistor Value
      5. 7.3.5 Driving Capacitive Loads
    4. 7.4 Device Functional Modes
      1. 7.4.1 Split-Supply Operation (±1.35 V to ±2.7 V)
      2. 7.4.2 Single-Supply Operation (2.7 V to 5.4 V)
      3. 7.4.3 Power Shutdown Operation
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Noninverting Amplifier
      2. 8.1.2 Inverting Amplifier
      3. 8.1.3 Output DC Error Calculations
      4. 8.1.4 Output Noise Calculations
    2. 8.2 Typical Applications
      1. 8.2.1 High-Gain Differential I/O Designs
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Transimpedance Amplifier
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curve
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 开发支持
        1. 9.1.1.1 TINA-TI™ 仿真软件(免费下载)
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 接收文档更新通知
    4. 9.4 支持资源
    5. 9.5 Trademarks
    6. 9.6 静电放电警告
    7. 9.7 术语表
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Split-Supply Operation (±1.35 V to ±2.7 V)

To facilitate testing with common lab equipment, the OPA838 EVM (see EVM board link) is built to allow split-supply operation. This configuration eases lab testing because the midpoint between the power rails is ground, and most signal generators, network analyzers, oscilloscopes, spectrum analyzers, and other lab equipment have inputs and outputs with a ground reference. This simplifies characterization by removing the requirement for blocking capacitors.

Figure 7-8 shows a simple noninverting configuration analogous to Figure 7-1 with a ±2.5‑V supply and VREF equal to ground. The input and output swing symmetrically around ground. For ease of use, split-supplies are preferred in systems where signals swing around ground. Using bipolar (or split) supplies shifts the thresholds for the shutdown control. The disable control is referenced from the negative supply, typically ground, in a single-supply application. However, to disable using a negative supply requires that the pin is set to within 0.55 V greater than the negative supply. If disable is not required, connect that pin to the positive supply to maintain correct operation, even for split-supply applications. Do not float the disable pin; assert the pin to a voltage.

OPA838 Split-Supply OperationFigure 7-8 Split-Supply Operation
OPA838 Bipolar-Supply Step ResponseFigure 7-9 Bipolar-Supply Step Response