ZHCSAT8G september   2012  – october 2020 SN65DSI85

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings #GUID-24B27461-2407-4A70-B6CA-5D1E4961612D/SLLSEB91839
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
  8.   Parameter Measurement Information
  9. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Clock Configurations and Multipliers
      2. 7.3.2 ULPS
      3. 7.3.3 LVDS Pattern Generation
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operating Modes
      2. 7.4.2 24
      3. 7.4.3 Reset Implementation
      4. 7.4.4 Initialization Sequence
      5. 7.4.5 LVDS Output Formats
      6. 7.4.6 DSI Lane Merging
      7. 7.4.7 DSI Pixel Stream Packets
      8. 7.4.8 DSI Video Transmission Specifications
    5. 7.5 Programming
      1. 7.5.1 Local I2C Interface Overview
    6. 7.6 Register Maps
      1. 7.6.1 Control and Status Registers Overview
  10. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Video STOP and Restart Sequence
      2. 8.1.2 Reverse LVDS Pin Order Option
      3. 8.1.3 IRQ Usage
    2. 8.2 Typical Applications
      1. 8.2.1 Typical WUXGA 18-bpp Application
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Example Script
        3. 8.2.1.3 Application Curve
      2. 8.2.2 Typical WQXGA 24-bpp Application
        1. 8.2.2.1 Design Requirements
  11. Power Supply Recommendations
    1. 9.1 VCC Power Supply
    2. 9.2 VCORE Power Supply
  12. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Package Specific
      2. 10.1.2 Differential pairs
      3. 10.1.3 Ground
    2. 10.2 Layout Example
  13. 11Device and Documentation Support
    1. 11.1 Receiving Notification of Documentation Updates
    2. 11.2 Community Resources
    3. 11.3 Trademarks
  14. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Differential pairs

  • Differential pairs must be routed with controlled 100-Ω differential impedance (±20%) or 50-Ω single-ended impedance (±15%).
  • Keep away from other high speed signals.
  • Keep lengths to within 5 mils of each other.
  • Length matching must be near the location of mismatch.
  • Each pair must be separated at least by 3 times the signal trace width.
  • The use of bends in differential traces must be kept to a minimum. When bends are used, the number of left and right bends must be as equal as possible and the angle of the bend must be ≥ 135 degrees. This arrangement minimizes any length mismatch caused by the bends and therefore minimizes the impact that bends have on EMI.
  • Route all differential pairs on the same of layer.
  • The number of vias must be kept to a minimum. It is recommended to keep the via count to 2 or less.
  • Keep traces on layers adjacent to ground plane.
  • Do NOT route differential pairs over any plane split.
  • Adding Test points will cause impedance discontinuity and will therefore negatively impact signal performance. If test points are used, they must be placed in series and symmetrically. They must not be placed in a manner that causes a stub on the differential pair.