ZHCSBP5C september   2013  – october 2020 SN65DSI86

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Revision History
  6. Description (continued)
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Switching Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 MIPI Dual DSI Interface
      2. 8.3.2 Embedded DisplayPort Interface
      3. 8.3.3 General-Purpose Input and Outputs
        1. 8.3.3.1 GPIO REFCLK and DSIA Clock Selection
        2. 8.3.3.2 Suspend Mode
        3. 8.3.3.3 Pulse Width Modulation (PWM)
    4. 8.4 Device Functional Modes
      1. 8.4.1 Reset Implementation
      2. 8.4.2 Power-Up Sequence
      3. 8.4.3 Power Down Sequence
      4. 8.4.4 Display Serial Interface (DSI)
        1. 8.4.4.1 DSI Lane Merging
        2. 8.4.4.2 DSI Supported Data Types
        3. 8.4.4.3 Generic Request Datatypes
          1. 8.4.4.3.1 Generic Read Request 2-Parameters Request
          2. 8.4.4.3.2 Generic Short Write 2-Parameters Request
          3. 8.4.4.3.3 Generic Long Write Packet Request
        4. 8.4.4.4 DSI Pixel Stream Packets
        5. 8.4.4.5 DSI Video Transmission Specifications
        6. 8.4.4.6 Video Format Parameters
        7. 8.4.4.7 GPU LP-TX Clock Requirements
      5. 8.4.5 DisplayPort
        1. 8.4.5.1  HPD (Hot Plug/Unplug Detection)
        2. 8.4.5.2  AUX_CH
          1. 8.4.5.2.1 Native Aux Transactions
        3. 8.4.5.3  I2C-Over-AUX
          1. 8.4.5.3.1 Direct Method (Clock Stretching)
          2. 8.4.5.3.2 Indirect Method (CFR Read/Write)
        4. 8.4.5.4  DisplayPort PLL
        5. 8.4.5.5  DP Output VOD and Pre-emphasis Settings
        6. 8.4.5.6  DP Main Link Configurability
        7. 8.4.5.7  DP Main Link Training
          1. 8.4.5.7.1 Manual Link Training
          2. 8.4.5.7.2 Fast Link Training
          3. 8.4.5.7.3 54
          4. 8.4.5.7.4 Semi-Auto Link Training
          5. 8.4.5.7.5 Redriver Semi-Auto Link Training
        8. 8.4.5.8  Panel Size vs DP Configuration
        9. 8.4.5.9  Panel Self Refresh (PSR)
        10. 8.4.5.10 Secondary Data Packet (SDP)
        11. 8.4.5.11 Color Bar Generator
        12. 8.4.5.12 DP Pattern
          1. 8.4.5.12.1 HBR2 Compliance Eye
          2. 8.4.5.12.2 80-Bit Custom Pattern
        13. 8.4.5.13 BPP Conversion
    5. 8.5 Programming
      1. 8.5.1 Local I2C Interface Overview
    6. 8.6 Register Map
      1. 8.6.1 Standard CFR Registers (PAGE 0)
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 1080p (1920x1080 60 Hz) Panel
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 eDP Design Procedure
          2. 9.2.1.2.2 76
          3. 9.2.1.2.3 DSI Design Procedure
          4. 9.2.1.2.4 78
          5. 9.2.1.2.5 Example Script
        3. 9.2.1.3 Application Curve
  11. 10Power Supply Recommendations
    1. 10.1 VCC Power Supply
    2. 10.2 VCCA Power supply
    3. 10.3 VPLL and VCCIO Power Supplies
  12. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 DSI Guidelines
      2. 11.1.2 eDP Guidelines
      3. 11.1.3 Ground
    2. 11.2 Layout Example
  13. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
  14. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Suspend Mode

Suspend mode is intended to be used with the Section 8.4.5.9 feature of the eDP sink. The PSR feature saves system power but this power savings must not produce any noticeable display artifacts to the end user. The deassertion of EN produces the greatest DSIx6 power savings, but the reconfiguration of the DSIx6 may be too slow, and therefore produce a bad end-user experience. In this case, Suspend mode is the next best option for reducing DSIx6 power consumption while in an active PSR state. Suspend mode allows for quick exit from an active PSR state.

When GPIO1 is configured for suspended operation (GPIO1 pin is asserted), then the DSIx6 is placed in low-power mode. The suspend (GPIO1) pin is sampled by the rising edge of REFCLK. If the suspend pin is sampled asserted, then all CSR registers do not reset to the default values, and the DP PLL, DP interface, and DSI interfaces are powered off, as shown in Figure 7-3. REFCLK can be turned off when DSIx6 is in Suspend mode. Section 7.6 summarizes the timing requirements to take the DSIx6 into Suspend mode.

The DSIx6 supports assertion of IRQ for HPD events. When an IRQ_HPD event is detected and both IRQ_EN and IRQ_HPD_EN bits are set, then the DSIx6 will assert the IRQ.

In order to take the DSIx6 out of Suspend mode, the REFCLK must be running before and after the suspend (GPIO1) pin is deasserted. After the DP PLL is locked, the DSIx6 transitions the ML_TX_MODE from Main Link Off to either Normal or Semi-Auto Link depending on the state of PSR_TRAIN register. If the PSR_EXIT_VIDEO bit is set, then active video begins transmitting over the DisplayPort interface after the first vertical sync start (VSS) is detected on the DSI interface. If the PSR_EXIT_VIDEO bit is not set, software must enable the VSTREAM_ENABLE bit. Then active video begins transmitting over the DisplayPort interface after the first vertical sync start The Section 7.6 table summarizes the timing requirements to take the DSIx6 into SUSPEND mode. (VSS) is detected on the DSI interface.

Note:

If the GPIO4_CTRL is configured for PWM, the PWM will be active during SUSPEND. If the system designer does not wish the PWM active during SUSPEND, then software can change the GPIO4_CTRL to Input before entering SUSPEND and then re-enable PWM after exiting SUSPEND by changing the GPIO4_CTRL to PWM.

Note:

For the case when DPPLL_CLK_SRC = 1, REFCLK mentioned in this section is replaced with a divided down version of the DSIA_CLK (DCAP/N). The means that DSIA_CLK must be active before the assertion of SUSPEND and before the deassertion of SUSPEND as specified in Section 7.6. The DSIA_CLK can be stopped while in SUSPEND as long as above requirements are meet.