ZHCS686A January   2012  – March 2016 SN65LVCP114

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. 说明 (续)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics (VCC 2.5 V ±5%)
    6. 7.6 Electrical Characteristics (VCC 3.3 V ±5%)
    7. 7.7 Electrical Characteristics (VCC 3.3 V ±5%, 2.5 V ±5%)
    8. 7.8 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Test Circuits
    2. 8.2 Equivalent Input and Output Schematic Diagrams
    3. 8.3 Functional Definitions
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Power Down
      2. 9.3.2  Lane Enable
      3. 9.3.3  Gain and Equalization
      4. 9.3.4  VOD
      5. 9.3.5  AGC
      6. 9.3.6  GPIO or I2C Configuration
      7. 9.3.7  Fast Switching
      8. 9.3.8  Power-Down Input Stages
      9. 9.3.9  Disable Output Lanes
      10. 9.3.10 Polarity Switch
    4. 9.4 Device Functional Modes
      1. 9.4.1 Normal Mode
      2. 9.4.2 Loopback
      3. 9.4.3 Diagnostic
    5. 9.5 Programming
      1. 9.5.1 Two-Wire Serial Interface and Control Logic
    6. 9.6 Register Maps
      1. 9.6.1 SN65LVCP114 Register Mapping Information
        1. 9.6.1.1  Register 0x00
        2. 9.6.1.2  Register 0x01
        3. 9.6.1.3  Register 0x02
        4. 9.6.1.4  Register 0x03
        5. 9.6.1.5  Register 0x04
        6. 9.6.1.6  Register 0x06
        7. 9.6.1.7  Register 0x07
        8. 9.6.1.8  Register 0x08
        9. 9.6.1.9  Register 0x0A
        10. 9.6.1.10 Register 0x0B
        11. 9.6.1.11 Register 0x0C
        12. 9.6.1.12 Register 0x0D
        13. 9.6.1.13 Register 0x0F
        14. 9.6.1.14 Register 0x10
        15. 9.6.1.15 Register 0x11
        16. 9.6.1.16 Register 0x12
        17. 9.6.1.17 Register Descriptions
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Transmit-Side Typical Application
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
        3. 10.2.1.3 Application Curves
      2. 10.2.2 Receive-Side Typical Application
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
        3. 10.2.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13器件和文档支持
    1. 13.1 文档支持
      1. 13.1.1 相关文档
    2. 13.2 社区资源
    3. 13.3 商标
    4. 13.4 静电放电警告
    5. 13.5 Glossary
  14. 14机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Layout

Layout Guidelines

TI recommends using at a minimum a four-layer stack-up to accomplish a low-EMI PCB design.

  • It is important to match the electrical length of these high-speed traces to minimize both inter-pair and intrapair skew.
  • Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for transmission line interconnects and provides an excellent low-inductance path for the return current flow.
  • Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance.
  • Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links usually have margin to tolerate discontinuities such as vias.
  • If an additional supply voltage plane or signal layer is needed, add a second power / ground plane system to the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the power and ground plane of each power system can be placed closer together, thus increasing the high frequency bypass capacitance significantly

SN65LVCP114 PCB_stack_sllsea8.gif Figure 40. PCB Stack

Layout Example

SN65LVCP114 layout_example_sllsea8.gif Figure 41. Layout Example