SCES577E JUNE   2004  – November 2015 SN74AVCH4T245

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics
    6. 7.6  Switching Characteristics, VCCA = 1.2 V
    7. 7.7  Switching Characteristics, VCCA = 1.5 V ± 0.1 V
    8. 7.8  Switching Characteristics, VCCA = 1.8 V ± 0.15 V
    9. 7.9  Switching Characteristics, VCCA = 2.5 V ± 0.2 V
    10. 7.10 Switching Characteristics, VCCA = 3.3 V ± 0.3 V
    11. 7.11 Operating Characteristics
    12. 7.12 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.2V to 3.6V Power-Supply Range
      2. 9.3.2 Supports High Speed Translation
      3. 9.3.3 Ioff Supports Partial-Power-Down Mode Operation
      4. 9.3.4 Bus-Hold Circuitry
      5. 9.3.5 Vcc Isolation Feature
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
      3. 10.2.3 Application Curve
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Community Resources
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

11 Power Supply Recommendations

The SN74AVCH4T245 device uses two separate configurable power-supply rails, VCCA and VCCB. VCCA accepts any supply voltage from 1.2 V to 3.6 V and VCCB accepts any supply voltage from 1.2 V to 3.6 V. The A port and B port are designed to track VCCA and VCCB respectively allowing for low voltage bidirectional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.

The output-enable (OE) input circuit is designed so that it is supplied by VCCA and when the OE input is high, all outputs are placed in the high-impedance state. To ensure the high-impedance state of the outputs during power up or power down, the OE input pin must be tied to VCCA through a pull-up resistor and must not be enabled until VCCA and VCCB are fully ramped and stable. The minimum value of the pull-up resistor to VCCA is determined by the current-sinking capability of the driver.

VCCA or VCCB can be powered up first. If the SN74AVCH4T245 is powered up in a permanently enabled state, pull-up resistors are recommended at the input. This ensures proper/glitch-free power-up. (Refer to Designing with SN74LVCXT245 and SN74LVCHXT245 Family of Direction Controlled Voltage Translators/Level-Shifters Application Note (SLVA746).)