SCLS036F March 1984 – June 2019 SN74HC7032
PRODUCTION DATA
请参考 PDF 数据表获取器件具体的封装图。
Ensure the desired supply voltage is within the range specified in the Recommended Operating Conditions. The supply voltage sets the device's electrical characteristics as described in the Electrical Characteristics.
The positive voltage supply must be capable of sourcing current equal to the maximum static supply current, ICC, listed in Electrical Characteristics and any transient current required for switching.
The ground must be capable of sinking current equal to the total current to be sunk by all outputs of the SN74HC7032 plus the maximum supply current, ICC, listed in Electrical Characteristics, and any transient current required for switching. The logic device can only sink as much current as can be sunk into its ground connection. Be sure not to exceed the maximum total current through GND listed in the Absolute Maximum Ratings.
The SN74HC7032 can drive a load with a total capacitance less than or equal to 50 pF while still meeting all of the datasheet specifications. Larger capacitive loads can be applied, however it is not recommended to exceed 50 pF.
The SN74HC7032 can drive a load with total resistance described by RL ≥ VO / IO, with the output voltage and current defined in the Electrical Characteristics table with VOL. When outputting in the high state, the output voltage in the equation is defined as the difference between the measured output voltage and the supply voltage at the VCC pin.
Total power consumption can be calculated using the information provided in CMOS Power Consumption and Cpd Calculation.
Thermal increase can be calculated using the information provided in Thermal Characteristics of Standard Linear and Logic (SLL) Packages and Devices.
The maximum junction temperature, TJ(max) listed in the Absolute Maximum Ratings, is an additional limitation to prevent damage to the device. Do not violate any values listed in the Absolute Maximum Ratings. These limits are provided to prevent damage to the device.