ZHCSB75E May   2013  – June 2016 TAS5729MD

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 描述
  4. 修订历史记录
  5. Related Devices
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Digital I/O Pins
    6. 7.6  Master Clock
    7. 7.7  Serial Audio Port
    8. 7.8  Protection Circuitry
    9. 7.9  Speaker Amplifier in All Modes
    10. 7.10 Speaker Amplifier in Stereo Bridge Tied Load (BTL) Mode
    11. 7.11 Speaker Amplifier in Stereo Post-Filter Parallel Bridge Tied Load (Post-Filter PBTL) Mode
    12. 7.12 Headphone Amplifier and Line Driver
    13. 7.13 Reset Timing
    14. 7.14 I2C Control Port
    15. 7.15 Typical Electrical Power Consumption
    16. 7.16 Typical Characteristics
      1. 7.16.1 Speaker Amplifier
      2. 7.16.2 Headphone Amplifier
      3. 7.16.3 Line Driver
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Power Supply
      2. 9.3.2  ADR/SPK_FAULT
      3. 9.3.3  Device Protection System
        1. 9.3.3.1 Overcurrent (OC) Protection With Current Limiting
        2. 9.3.3.2 Overtemperature Protection
        3. 9.3.3.3 Undervoltage Error (UVE) and Power-On Reset (POR)
      4. 9.3.4  Clock, Auto Detection, and PLL
      5. 9.3.5  Serial Data Interface
      6. 9.3.6  PWM Section
      7. 9.3.7  I2C Compatible Serial Control Interface
      8. 9.3.8  Serial Interface Control And Timing
        1. 9.3.8.1 I2S Timing
        2. 9.3.8.2 Left-Justified
        3. 9.3.8.3 Right-Justified
      9. 9.3.9  Automatic Gain Limiting (AGL)
      10. 9.3.10 PWM Level Meter
    4. 9.4 Device Functional Modes
      1. 9.4.1 Device Protection Mode
      2. 9.4.2 Speaker Amplifier Mode
        1. 9.4.2.1 Stereo Mode
        2. 9.4.2.2 Monaural Mode
      3. 9.4.3 Headphone/Line Amplifier
    5. 9.5 Programming
      1. 9.5.1 I2C Serial Control Interface
        1. 9.5.1.1 General I2C Operation
        2. 9.5.1.2 Single- and Multiple-Byte Transfers
        3. 9.5.1.3 Single-Byte Write
        4. 9.5.1.4 Multiple-Byte Write
        5. 9.5.1.5 Single-Byte Read
        6. 9.5.1.6 Multiple-Byte Read
      2. 9.5.2 26-Bit 3.23 Number Format
    6. 9.6 Register Maps
      1. 9.6.1  Clock Control Register (0x00)
      2. 9.6.2  Device ID Register (0x01)
      3. 9.6.3  Error Status Register (0x02)
      4. 9.6.4  System Control Register 1 (0x03)
      5. 9.6.5  Serial Data Interface Register (0x04)
      6. 9.6.6  System Control Register 2 (0x05)
      7. 9.6.7  Soft Mute Register (0x06)
      8. 9.6.8  Volume Registers (0x07, 0x08, 0x09)
      9. 9.6.9  Volume Configuration Register (0x0E)
      10. 9.6.10 Modulation Limit Register (0x10)
      11. 9.6.11 Interchannel Delay Registers (0x11, 0x12, 0x13, and 0x14)
      12. 9.6.12 PWM Shutdown Group Register (0x19)
      13. 9.6.13 Start/Stop Period Register (0x1A)
      14. 9.6.14 Oscillator Trim Register (0x1B)
      15. 9.6.15 BKND_ERR Register (0x1C)
      16. 9.6.16 Input Multiplexer Register (0x20)
      17. 9.6.17 Channel 4 Source Select Register (0x21)
      18. 9.6.18 PWM Output MUX Register (0x25)
      19. 9.6.19 AGL Control Register (0x46)
      20. 9.6.20 PWM Switching Rate Control Register (0x4F)
      21. 9.6.21 EQ Control (0x50)
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Stereo BTL Configuration With Headphone and Line Driver Amplifier
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Hardware Integration
          2. 10.2.1.2.2 Control and Software Integration
          3. 10.2.1.2.3 Recommended Start-Up and Shutdown Procedures
            1. 10.2.1.2.3.1 Initialization Sequence
            2. 10.2.1.2.3.2 Normal Operation
            3. 10.2.1.2.3.3 Shutdown Sequence
            4. 10.2.1.2.3.4 Power-Down Sequence
        3. 10.2.1.3 Application Curves for Stereo BTL Configuration with Headphone and Line Driver Amplifier
      2. 10.2.2 Mono PBTL Configuration with Headphone and Line Driver Amplifier
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
        3. 10.2.2.3 Application Curves
  11. 11Power Supply Recommendations
    1. 11.1 DVDD, AVDD, and DRVDD Supplies
    2. 11.2 PVDD Power Supply
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13器件和文档支持
    1. 13.1 文档支持
      1. 13.1.1 相关文档
    2. 13.2 接收文档更新通知
    3. 13.3 社区资源
    4. 13.4 商标
    5. 13.5 静电放电警告
    6. 13.6 Glossary
  14. 14机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Specifications

Absolute Maximum Ratings(1)

Over operating free-air temperature range (unless otherwise noted).
MIN MAX UNIT
Temperature Ambient operating temperature, TA 0 85 °C
Supply voltage DVDD, DRVDD, AVDD –0.3 4.2 V
PVDD –0.3 30 V
Input voltage DVDD referenced digital inputs –0.5 DVDD + 0.5 V
5-V tolerant digital inputs (2) –0.5 DVDD + 2.5(3) V
DR_INx DRVSS – 0.3 DRVDD + 0.3 V
HP Load RLOAD(HP) 12.8 N/A Ω
Line Driver Load RLOAD(LD) 600 N/A Ω
Voltage at speaker output pins SPK_OUTx –0.03 32 V
Voltage at BSTRPx pins BSTRPx –0.03 39 V
Storage temperature, Tstg –40 125 °C
Stresses beyond those listed under Absolute Maximum Ratings can cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability.
5-V tolerant inputs are PDN, RESET, SCLK, LRCLK, MCLK, SDIN, SDA, and SCL.
Maximum pin voltage should not exceed 6 V.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±250
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
TA Ambient operating temperature 0 85 °C
VDD DVDD, DRVDD, and AVDD supply 2.97 3.63 V
PVDD PVDD supply 4.5 26.4(1) V
VIH Input logic high 2 V
VIL Input logic low 0.8 V
RHP Minimum HP load 16 Ω
RLD Minimum line driver load 600 Ω
RSPK(BTL) Minimum speaker load in BTL mode 4 Ω
RSPK(PBTL) Minimum speaker load in post-filter PBTL mode 4 Ω
LFILT Minimum output inductance under short-circuit condition 10 µH
For operation at PVDD levels greater than 18 V, the modulation limit must be set to 93.8% via the control port register 0x10.

Thermal Information

THERMAL METRIC(1) TAS5729MD UNIT
DCA(2) DCA(3)
48 PINS
RθJA Junction-to-ambient thermal resistance 62.6 32.6 °C/W
RθJC(top) Junction-to-case (bottom) thermal resistance 17.9 16.2 °C/W
RθJB Junction-to-board thermal resistance 11.9 14.4 °C/W
ψJT Junction-to-top characterization parameter 0.8 0.9 °C/W
ψJB Junction-to-board characterization parameter 13.5 14.3 °C/W
RθJC(bottom) Junction-to-case (top) thermal resistance 1.5 1.4 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metricsapplication report.
JEDEC Standard 2 Layer Board
JEDEC Standard 4 Layer Board

Digital I/O Pins

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
|IIH| Input logic high current level All digital pins 75 µA
VIH Input logic high threshold for DVDD referenced digital inputs All digital pins 2 V
|IIL| Input logic low current level All digital pins 75 µA
VIL Input logic low threshold for DVDD referenced digital inputs All digital pins 0.8 V
VOH Output logic high voltage level IOH = 4 mA, VDD = 3 V 2.4 V
VOL Output logic low voltage level IOH = –4 mA, VDD = 3 V 0.5 V

Master Clock

over operating free-air temperature range (unless otherwise noted)
PARAMETER MIN TYP MAX UNIT
DMCLK Allowable MCLK duty cycle 40% 50% 60%
fMCLK Supported MCLK frequencies 2.8224 24.576 MHz
tr
tf
Rise or fall time for MCLK 5 ns

Serial Audio Port

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fSCLK Supported SCLK frequencies Values include 32, 48, and 64 32 64 × fS
DSCLK Allowable SCLK duty cycle 40% 50% 60%
tsu2 Required SDIN setup time before SCLK rising edge 10 ns
th2 Required SDIN hold time after SCLK rising edge 10 ns
fS Supported input sample rates 8 48 kHz
DLRCLK Allowable LRCLK duty cycle 40% 50% 60%
tsu1 Required LRCLK to SCLK rising edge 10 ns
th1 Required LRCLK to SCLK rising edge 10 ns
tr, tf Rise or fall time for SCLK and LRCLK 8 ns
Allowable LRCLK drift before LRCLK reset 4 MCLKs

Protection Circuitry

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OCETHRES Overcurrent threshold for each BTL output PVDD = 15 V, TA = 25°C 4.5 A
UVETHRES(PVDD) Undervoltage error (UVE) threshold PVDD falling 4 V
UVETHRES(AVDD) Undervoltage error (UVE) threshold AVDD falling 4.1 V
UVEHYST(PVDD) UVE recovery threshold PVDD rising 4.5 V
UVEHYST(AVDD) UVE recovery threshold AVDD rising 2.7 V
OTETHRES Overtemperature error (OTE) threshold 150 °C
OTEHYST OTE recovery threshold 30 °C

Speaker Amplifier in All Modes

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fSPK_AMP Speaker amplifier switching frequency 11.025-, 22.05-, or 44.1-kHz data rate ±2% 352.8 kHz
48-, 24-, 12-, 8-, 16-, or 32-kHz data rate ±2% 384 kHz
RDS(ON) On resistance of output MOSFET (both high-side and low-side) PVDD = 15 V, TA = 25°C, die only 200
PVDD = 15 V, TA = 25°C,
includes: die, bond wires, leadframe
240
RPD Internal pulldown resistor at output of each half-bridge making up the full bridge outputs Connected when drivers are hi-Z to provide bootstrap capacitor charge 3

Speaker Amplifier in Stereo Bridge Tied Load (BTL) Mode

TA = 25°C, PVDD = 18 V, AVDD = DRVDD = DVDD = 3.3 V, audio input signal = 1-kHz sine wave, BTL, AD mode, fS = 48 kHz, RSPK = 8 Ω, AES17 filter, fPWM = 384 kHz, external components per Typical Characteristics, and in accordance with recommended operating conditions (unless otherwise specified).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ICN(SPK) Idle channel noise PVDD = 18 V, A-Weighted 56 µVrms
PO(SPK) Maximum continuous output power per channel PVDD = 13 V, 10% THD, 1-kHz input signal 10.5 W
PVDD = 8 V, 10% THD, 1-kHz input signal 4 W
PVDD = 18 V, 10% THD, 1-kHz input signal 12 W
SNR(SPK) Signal-to-noise ratio (referenced to 0dBFS input signal) PVDD = 18 V, A-weighted, f = 1 kHz, maximum power at THD < 1% 105 dB
THD+N(SPK) Total harmonic distortion and noise PVDD = 18 V; PO = 1 W 0.15%
PVDD = 13 V; PO = 1 W 0.13%
PVDD = 8 V; PO = 1 W 0.2%
X-Talk(SPK) Crosstalk (worst case between L-to-R and R-to-L coupling) PO = 1 W, f = 1 kHz (BD mode) –70 dB
PO = 1 W, f = 1 kHz (AD mode) –48 dB

Speaker Amplifier in Stereo Post-Filter Parallel Bridge Tied Load (Post-Filter PBTL) Mode

TA = 25°C, PVDD = 18 V, AVDD = DRVDD = DVDD = 3.3 V, audio input signal = 1-kHz sine wave, BTL, AD mode, fS = 48 kHz, RSPK = 4 Ω, AES17 filter, fPWM = 384 kHz, external components per Typical Characteristics, and in accordance with recommended operating conditions (unless otherwise specified).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ICN(SPK) Idle channel noise PVDD = 18 V, A-Weighted 42 µVrms
PO(SPK) Maximum continuous output power per channel PVDD = 13 V, 10% THD, 1-kHz input signal 18.9 W
PVDD = 8 V, 10% THD, 1-kHz input signal 7.2 W
PVDD = 18 V, 10% THD, 1-kHz input signal 24 W
SNR(SPK) Signal-to-noise ratio (referenced to 0dBFS input signal) PVDD = 18 V, A-weighted, f = 1 kHz, maximum power at THD < 1% 105 dB
THD+N(SPK) Total harmonic distortion and noise PVDD = 18 V; PO = 1 W 0.06%
PVDD = 13 V; PO = 1 W 0.03%
PVDD = 8 V; PO = 1 W 0.15%

Headphone Amplifier and Line Driver

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fCP Charge pump switching frequency 200 300 400 kHz
PO(HP) Headphone amplifier output power RLOAD(HP) = 32 Ω, THD+N = 1%, outputs in phase 55 mW
SNR(HP) Signal-to-noise ratio (Referenced to 55-mW output signal), RLOAD(HP) = 32 Ω, A-Weighted 101 dB
SNR(LD) Signal-to-noise ratio (Referenced to 2-Vrms output signal), RLOAD(LD) = 10 kΩ, A-Weighted 105 dB

Reset Timing

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
tw(RESET) Pulse duration required to reset the device 100 µs

I2C Control Port

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
CL(I²C) Allowable load capacitance for each I2C line 400 pF
fSCL Supported SCL frequency No wait states 100 400 kHz
tbuf Bus free time between stop and start conditions 1.3 µs
tf(I²C) Rise time, SCL and SDA 300 ns
th1(I²C) Hold time, SCL to SDA 0 ns
th2(I²C) Hold time, start condition to SCL 0.6 µs
tI²C(start) I2C startup time Time to enable I2C from RST release 12 ms
tr(I²C) Rise time, SCL and SDA 300 ns
tsu1(I²C) Setup time, SDA to SCL 100 ns
tsu2(I²C) Setup time, SCL to start condition 0.6 µs
tsu3(I²C) Setup time, SCL to stop condition 0.6 µs
Tw(H) Required pulse duration, SCL high 0.6 µs
Tw(L) Required pulse duration, SCL low 1.3 µs
TAS5729MD T0027-01.gif Figure 1. SCL and SDA Timing for I2C Control Port
TAS5729MD T0421-01_LOS556.gif Figure 2. Start and Stop Timing Conditions

Typical Electrical Power Consumption

over operating free-air temperature range (unless otherwise noted), with DVDD = DRVDD = 3.3 V and AVDD = PVDD, external components as specified on the EVM.
SPEAKER AMPLIFIER STATE CONFIGURATION SETTINGS VPVDD
[V]
IPVDD
[mA]
IVDD
[mA]
PDISS
(From all Supplies)
[W]
fSPK_AMP OPERATIONAL STATE
384kHz Idle RST pulled high, speaker amplifier outputs at 50/50 mute 18 20 48 0.51
Reset RST pulled low, PDN pulled high 5 21 0.16

Typical Characteristics

Speaker Amplifier

TAS5729MD Plot 1.gif

NOTE:

Dashed lines represent thermally limited region.
Figure 3. Output Power vs PVDD in BTL Mode
TAS5729MD Plot 2.png Figure 5. Total Harmonic Distortion + Noise vs Frequency in BTL Mode With PVDD = 12 V
TAS5729MD Plot 4.png Figure 7. Total Harmonic Distortion + Noise vs Frequency in BTL Mode With PVDD = 24 V
TAS5729MD C007_PBTL_THDvFreq18V8R.png Figure 9. Total Harmonic Distortion + Noise vs Frequency in Post-Filter PBTL Mode With PVDD = 18 V
TAS5729MD Plot 5.png Figure 11. Stereo BTL Idle Channel Noise vs PVDD
TAS5729MD Plot 6.png Figure 13. Total Harmonic Distortion + Noise vs Output Power in BTL Mode With PVDD = 12 V
TAS5729MD Plot 8.png Figure 15. Total Harmonic Distortion + Noise vs Output Power in BTL Mode With PVDD = 24 V
TAS5729MD C015_PBTL_THDvPo1kHz18V8R.png Figure 17. Total Harmonic Distortion + Noise vs Output Power in Post-Filter PBTL Mode With PVDD = 18 V
TAS5729MD C017_EffvPo12V18V24V8R.png
All channels driven
Figure 19. Efficiency vs Output Power in BTL Mode
TAS5729MD C019_XtalkvFreq12V8R.png Figure 21. 8-Ohm Load Crosstalk vs Frequency in BTL Mode With PVDD = 12 V
TAS5729MD Plot 9.png Figure 23. 4-Ohm Load Crosstalk vs Frequency in BTL Mode With PVDD = 12 V
TAS5729MD C002_PBTL_PVDDvPo8Vto24V8R.gif

NOTE:

Dashed lines represent thermally limited region.
Figure 4. Output Power vs PVDD in Post-Filter PBTL Mode
TAS5729MD Plot 3.png Figure 6. Total Harmonic Distortion + Noise vs Frequency in BTL Mode With PVDD = 18 V
TAS5729MD C006_PBTL_THDvFreq12V8R.png Figure 8. Total Harmonic Distortion + Noise vs Frequency in Post-Filter PBTL Mode With PVDD = 12 V
TAS5729MD C008_PBTL_THDvFreq24V8R.png Figure 10. Total Harmonic Distortion + Noise vs Frequency in Post-Filter PBTL Mode With PVDD = 24 V
TAS5729MD C010_PBTL_PVDDvICN8Vto24V8R.png Figure 12. Post-Filter PBTL Idle Channel Noise vs PVDD
TAS5729MD Plot 7.png Figure 14. Total Harmonic Distortion + Noise vs Output Power in BTL Mode With PVDD = 18 V
TAS5729MD C014_PBTL_THDvPo1kHz12V8R.png Figure 16. Total Harmonic Distortion + Noise vs Output Power in Post-Filter PBTL Mode With PVDD = 12 V
TAS5729MD C016_PBTL_THDvPo1kHz24V8R.png Figure 18. Total Harmonic Distortion + Noise vs Output Power in Post-Filter PBTL Mode With PVDD = 24 V
TAS5729MD C018_PBTL_EffvPo12V18V24V4R.png
All channels driven
Figure 20. Efficiency vs Output Power in Post-Filter PBTL Mode
TAS5729MD C020_XtalkvFreq24V8R.png Figure 22. 8-Ohm Load Crosstalk vs Frequency in BTL Mode With PVDD = 24 V
TAS5729MD Plot 10.png Figure 24. 4-Ohm Load Crosstalk vs Frequency in BTL Mode With PVDD = 24 V

Headphone Amplifier

TAS5729MD C021_HPTHDvFreq3p3V16R32R.png Figure 25. Headphone Total Harmonic Distortion + Noise vs Frequency With DRVDD = 3.3 V
TAS5729MD C023_XtalkvFreq3p3V16R.png Figure 27. Headphone Crosstalk vs Frequency with DRVDD = 3.3 V and RHP = 16 Ω
TAS5729MD C022_HPTHDvVo1kHz3p3V16R32R.png Figure 26. Headphone Total Harmonic Distortion + Noise vs Output Power With DRVDD = 3.3 V
TAS5729MD C024_XtalkvFreq3p3V32R.png Figure 28. Headphone Crosstalk vs Frequency with DRVDD = 3.3 V and RHP = 32 Ω

Line Driver

TAS5729MD C025_HPTHDvFreq3p3V5kR10kR.png Figure 29. Line Driver Total Harmonic Distortion + Noise vs Frequency With DRVDD = 3.3 V
TAS5729MD C027_XtalkvFreq3p3V5kR.png Figure 31. Line Driver Crosstalk vs Frequency With DRVDD = 3.3 V
TAS5729MD C026_HPTHDvVo1kHz3p3V5kR10kR.png Figure 30. Line Driver THD+N vs Output Voltage With DRVDD = 3.3 V