SLAS988B June   2014  – August 2015 TAS5756M

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1. 6.1 Internal Pin Configurations
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics
    6. 7.6  MCLK Timing
    7. 7.7  Serial Audio Port Timing - Slave Mode
    8. 7.8  Serial Audio Port Timing - Master Mode
    9. 7.9  I2C Bus Timing - Standard
    10. 7.10 I2C Bus Timing - Fast
    11. 7.11 SPK_MUTE Timing
    12. 7.12 Power Dissipation
    13. 7.13 Typical Characteristics
      1. 7.13.1 Bridge Tied Load (BTL) Configuration Curves
      2. 7.13.2 Parallel Bridge Tied Load (PBTL) Configuration
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Power-on-Reset (POR) Function
      2. 8.3.2 Device Clocking
      3. 8.3.3 Serial Audio Port
        1. 8.3.3.1 Clock Master Mode from Audio Rate Master Clock
        2. 8.3.3.2 Clock Master from a Non-Audio Rate Master Clock
        3. 8.3.3.3 Clock Slave Mode with 4-Wire Operation (SCLK, MCLK, LRCK/FS, SDIN)
        4. 8.3.3.4 Clock Slave Mode with SLCK PLL to Generate Internal Clocks (3-Wire PCM)
          1. 8.3.3.4.1 Clock Generation using the PLL
          2. 8.3.3.4.2 PLL Calculation
            1. 8.3.3.4.2.1 Examples:
        5. 8.3.3.5 Serial Audio Port - Data Formats and Bit Depths
          1. 8.3.3.5.1 Data Formats and Master/Slave Modes of Operation
        6. 8.3.3.6 Input Signal Sensing (Power-Save Mode)
        7. 8.3.3.7 Serial Data Output
      4. 8.3.4 Modulation Scheme
        1. 8.3.4.1 BD-Modulation
      5. 8.3.5 miniDSP Audio Processing Engine
        1. 8.3.5.1 HybridFlow Architecture
        2. 8.3.5.2 Volume Control
          1. 8.3.5.2.1 Digital Volume Control
            1. 8.3.5.2.1.1 Emergency Volume Ramp Down
      6. 8.3.6 Adjustable Amplifier Gain and Switching Frequency Selection
      7. 8.3.7 Error Handling and Protection Suite
        1. 8.3.7.1 Device Overtemperature Protection
        2. 8.3.7.2 SPK_OUTxx Overcurrent Protection
        3. 8.3.7.3 DC Offset Protection
        4. 8.3.7.4 Internal VAVDD Undervoltage-Error Protection
        5. 8.3.7.5 Internal VPVDD Undervoltage-Error Protection
        6. 8.3.7.6 Internal VPVDD Overvoltage-Error Protection
        7. 8.3.7.7 External Undervoltage-Error Protection
        8. 8.3.7.8 Internal Clock Error Notification (CLKE)
      8. 8.3.8 GPIO Port and Hardware Control Pins
      9. 8.3.9 I2C Communication Port
        1. 8.3.9.1 Slave Address
        2. 8.3.9.2 Register Address Auto-Increment Mode
        3. 8.3.9.3 Packet Protocol
        4. 8.3.9.4 Write Register
        5. 8.3.9.5 Read Register
    4. 8.4 Device Functional Modes
      1. 8.4.1 Serial Audio Port Operating Modes
      2. 8.4.2 Communication Port Operating Modes
      3. 8.4.3 Audio Processing Modes via HybridFlow Audio Processing
      4. 8.4.4 Speaker Amplifier Operating Modes
        1. 8.4.4.1 Stereo Mode
        2. 8.4.4.2 Mono Mode
        3. 8.4.4.3 Bi-Amp Mode
        4. 8.4.4.4 Master and Slave Mode Clocking for Digital Serial Audio Port
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 External Component Selection Criteria
      2. 9.1.2 Component Selection Impact on Board Layout, Component Placement, and Trace Routing
      3. 9.1.3 Amplifier Output Filtering
      4. 9.1.4 Programming the TAS5756M
        1. 9.1.4.1 Resetting the TAS5756M registers and modules
        2. 9.1.4.2 Adaptive Mode and using CRAM buffers
    2. 9.2 Typical Applications
      1. 9.2.1 2.0 (Stereo BTL) System
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Step One: Hardware Integration
          2. 9.2.1.2.2 Step Two: HybridFlow Selection and System Level Tuning
          3. 9.2.1.2.3 Step Three: Software Integration
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Mono (PBTL) Systems
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1 Step One: Hardware Integration
          2. 9.2.2.2.2 Step Two: HybridFlow Selection and System Level Tuning
          3. 9.2.2.2.3 Step Three: Software Integration
        3. 9.2.2.3 Application Specific Performance Plots for Mono (PBTL) Systems
      3. 9.2.3 2.1 (Stereo BTL + External Mono Amplifier) Systems
        1. 9.2.3.1 Basic 2.1 System (TAS5756M Device + Simple Digital Input Amplifier)
        2. 9.2.3.2 Advanced 2.1 System (Two TAS5756M devices)
        3. 9.2.3.3 Design Requirements
        4. 9.2.3.4 Detailed Design Procedure
          1. 9.2.3.4.1 Step One: Hardware Integration
          2. 9.2.3.4.2 Step Two: HybridFlow Selection and System Level Tuning
          3. 9.2.3.4.3 Step Three: Software Integration
        5. 9.2.3.5 Application Specific Performance Plots for 2.1 (Stereo BTL + External Mono Amplifier) Systems
      4. 9.2.4 2.2 (Dual Stereo BTL) Systems
        1. 9.2.4.1 Design Requirements
        2. 9.2.4.2 Detailed Design Procedure
          1. 9.2.4.2.1 Step One: Hardware Integration
          2. 9.2.4.2.2 Step Two: HybridFlow Selection and System Level Tuning
          3. 9.2.4.2.3 Step Three: Software Integration
        3. 9.2.4.3 Application Specific Performance Plots for 2.2 (Dual Stereo BTL) Systems
      5. 9.2.5 1.1 (Dual BTL, Bi-Amped) Systems
        1. 9.2.5.1 Design Requirements
        2. 9.2.5.2 Detailed Design Procedure
          1. 9.2.5.2.1 Step One: Hardware Integration
          2. 9.2.5.2.2 Step Two: HybridFlow Selection and System Level Tuning
          3. 9.2.5.2.3 Step Three: Software Integration
        3. 9.2.5.3 Application Specific Performance Plots for 1.1 (Dual BTL, Bi-Amped) Systems
  10. 10Power Supply Recommendations
    1. 10.1 Power Supplies
      1. 10.1.1 DVDD Supply
      2. 10.1.2 PVDD Supply
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 General Guidelines for Audio Amplifiers
      2. 11.1.2 Importance of PVDD Bypass Capacitor Placement on PVDD Network
      3. 11.1.3 Optimizing Thermal Performance
        1. 11.1.3.1 Device, Copper, and Component Layout
        2. 11.1.3.2 Stencil Pattern
          1. 11.1.3.2.1 PCB footprint and Via Arrangement
            1. 11.1.3.2.1.1 Solder Stencil
    2. 11.2 Layout Example
      1. 11.2.1 2.0 (Stereo BTL) System
      2. 11.2.2 Mono (PBTL) System
      3. 11.2.3 2.1 (Stereo BTL + Mono PBTL) Systems
      4. 11.2.4 2.2 (Dual Stereo BTL) Systems
      5. 11.2.5 1.1 (Bi-Amped BTL) Systems
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Device Nomenclature
      2. 12.1.2 Development Support
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

12 Device and Documentation Support

12.1 Device Support

12.1.1 Device Nomenclature

The glossary listed in the Glossary section is a general glossary with commonly used acronyms and words which are defined in accordance with a broad TI initiative to comply with industry standards such as JEDEC, IPC, IEEE, and others. The glossary provided in this section defines words, phrases, and acronyms that are unique to this product and documentation, collateral, or support tools and software used with this product. For any additional questions regarding definitions and terminology, please see the e2e Audio Amplfier Forum.

Bridge tied load (BTL) is an output configuration in which one terminal of the speaker is connected to one half-bridge and the other terminal is connected to another half-bridge.

DUT refers to a device under test to differentiate one device from another.

Closed-loop architecture describes a topology in which the amplifier monitors the output terminals, comparing the output signal to the input signal and attempts to correct for non-linearities in the output.

Dynamic controls are those which are changed during normal use by either the system or the end-user.

GPIO is a general purpose input/output pin. It is a highly configurable, bi-directional digital pin which can perform many functions as required by the system.

Host processor (also known as System Processor, Scalar, Host, or System Controller) refers to device which serves as a central system controller, providing control information to devices connected to it as well as gathering audio source data from devices upstream from it and distributing it to other devices. This device often configures the controls of the audio processing devices (like the TAS5756M) in the audio path in order to optimize the audio output of a loudspeaker based on frequency response, time alignment, target sound pressure level, safe operating area of the system, and user preference.

HybridFlow uses components which are built in RAM and components which are built in ROM to make a configurable device that is easier to use than a fully-programmable device while remaining flexible enough to be used in several applications

Maximum continuous output power refers to the maximum output power that the amplifier can continuously deliver without shutting down when operated in a 25°C ambient temperature. Testing is performed for the period of time required that their temperatures reach thermal equilibrium and are no longer increasing

Parallel bridge tied load (PBTL) is an output configuration in which one terminal of the speaker is connected to two half-bridges which have been placed in parallel and the other terminal is connected to another pair of half bridges placed in parallel

rDS(on) is a measure of the on-resistance of the MOSFETs used in the output stage of the amplifier.

Static controls/Static configurations are controls which do not change while the system is in normal use.

Vias are copper-plated through-hole in a PCB.

12.1.2 Development Support

For the PurePath Console Software, go to www.ti.com/tool/purepathconsole.

See the User Guide, Using the TAS5754/6M HybridFlow Processor (SLAU577) for detailed information regarding the HybridFlow Processing and available HybridFlows.

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

    TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
    Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

PurePath, E2E are trademarks of Texas Instruments.

Burr-Brown is a registered trademark of Texas Instruments.

PowerPAD, PurePath are trademarks of TI.

All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

esds-image

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.