ZHCSGH3A March   2016  – July 2017 TAS5782M

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      简化框图
      2. 10% THD+N 时的功率与 PVDD 间的关系 (1)
  4. 修订历史记录
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
    2. 6.1 Internal Pin Configurations
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics
    6. 7.6  Power Dissipation Characteristics
    7. 7.7  MCLK Timing
    8. 7.8  Serial Audio Port Timing – Slave Mode
    9. 7.9  Serial Audio Port Timing – Master Mode
    10. 7.10 I2C Bus Timing – Standard
    11. 7.11 I2C Bus Timing – Fast
    12. 7.12 SPK_MUTE Timing
    13. 7.13 Typical Characteristics
      1. 7.13.1 Bridge Tied Load (BTL) Configuration Curves
      2. 7.13.2 Parallel Bridge Tied Load (PBTL) Configuration
  8. Parametric Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Power-on-Reset (POR) Function
      2. 9.3.2 Device Clocking
      3. 9.3.3 Serial Audio Port
        1. 9.3.3.1 Clock Master Mode from Audio Rate Master Clock
        2. 9.3.3.2 Clock Master from a Non-Audio Rate Master Clock
        3. 9.3.3.3 Clock Slave Mode with 4-Wire Operation (SCLK, MCLK, LRCK/FS, SDIN)
        4. 9.3.3.4 Clock Slave Mode with SCLK PLL to Generate Internal Clocks (3-Wire PCM)
          1. 9.3.3.4.1 Clock Generation using the PLL
          2. 9.3.3.4.2 PLL Calculation
            1. 9.3.3.4.2.1 Examples:
        5. 9.3.3.5 Serial Audio Port – Data Formats and Bit Depths
          1. 9.3.3.5.1 Data Formats and Master/Slave Modes of Operation
        6. 9.3.3.6 Input Signal Sensing (Power-Save Mode)
      4. 9.3.4 Enable Device
        1. 9.3.4.1 Example
      5. 9.3.5 Volume Control
        1. 9.3.5.1 DAC Digital Gain Control
          1. 9.3.5.1.1 Emergency Volume Ramp Down
      6. 9.3.6 Adjustable Amplifier Gain and Switching Frequency Selection
      7. 9.3.7 Error Handling and Protection Suite
        1. 9.3.7.1 Device Overtemperature Protection
        2. 9.3.7.2 SPK_OUTxx Overcurrent Protection
        3. 9.3.7.3 DC Offset Protection
        4. 9.3.7.4 Internal VAVDD Undervoltage-Error Protection
        5. 9.3.7.5 Internal VPVDD Undervoltage-Error Protection
        6. 9.3.7.6 Internal VPVDD Overvoltage-Error Protection
        7. 9.3.7.7 External Undervoltage-Error Protection
        8. 9.3.7.8 Internal Clock Error Notification (CLKE)
      8. 9.3.8 GPIO Port and Hardware Control Pins
      9. 9.3.9 I2C Communication Port
        1. 9.3.9.1 Slave Address
        2. 9.3.9.2 Register Address Auto-Increment Mode
        3. 9.3.9.3 Packet Protocol
        4. 9.3.9.4 Write Register
        5. 9.3.9.5 Read Register
        6. 9.3.9.6 DSP Book, Page, and Register Update
          1. 9.3.9.6.1 Book and Page Change
          2. 9.3.9.6.2 Swap Flag
          3. 9.3.9.6.3 Example Use
    4. 9.4 Device Functional Modes
      1. 9.4.1 Serial Audio Port Operating Modes
      2. 9.4.2 Communication Port Operating Modes
      3. 9.4.3 Speaker Amplifier Operating Modes
        1. 9.4.3.1 Stereo Mode
        2. 9.4.3.2 Mono Mode
        3. 9.4.3.3 Master and Slave Mode Clocking for Digital Serial Audio Port
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 External Component Selection Criteria
      2. 10.1.2 Component Selection Impact on Board Layout, Component Placement, and Trace Routing
      3. 10.1.3 Amplifier Output Filtering
      4. 10.1.4 Programming the TAS5782M
        1. 10.1.4.1 Resetting the TAS5782M Registers and Modules
    2. 10.2 Typical Applications
      1. 10.2.1 2.0 (Stereo BTL) System
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Step One: Hardware Integration
          2. 10.2.1.2.2 Step Two: System Level Tuning
          3. 10.2.1.2.3 Step Three: Software Integration
        3. 10.2.1.3 Application Curves
      2. 10.2.2 Mono (PBTL) Systems
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
          1. 10.2.2.2.1 Step One: Hardware Integration
          2. 10.2.2.2.2 Step Two: System Level Tuning
          3. 10.2.2.2.3 Step Three: Software Integration
        3. 10.2.2.3 Application Specific Performance Plots for Mono (PBTL) Systems
      3. 10.2.3 2.1 (Stereo BTL + External Mono Amplifier) Systems
        1. 10.2.3.1 Advanced 2.1 System (Two TAS5782M devices)
        2. 10.2.3.2 Design Requirements
        3. 10.2.3.3 Application Specific Performance Plots for 2.1 (Stereo BTL + External Mono Amplifier) Systems
  11. 11Power Supply Recommendations
    1. 11.1 Power Supplies
      1. 11.1.1 DVDD Supply
      2. 11.1.2 PVDD Supply
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 General Guidelines for Audio Amplifiers
      2. 12.1.2 Importance of PVDD Bypass Capacitor Placement on PVDD Network
      3. 12.1.3 Optimizing Thermal Performance
        1. 12.1.3.1 Device, Copper, and Component Layout
        2. 12.1.3.2 Stencil Pattern
          1. 12.1.3.2.1 PCB footprint and Via Arrangement
            1. 12.1.3.2.1.1 Solder Stencil
    2. 12.2 Layout Example
      1. 12.2.1 2.0 (Stereo BTL) System
      2. 12.2.2 Mono (PBTL) System
      3. 12.2.3 2.1 (Stereo BTL + Mono PBTL) Systems
  13. 13Register Maps
    1. 13.1 Registers - Page 0
      1. 13.1.1  Register 1 (0x01)
        1. Table 27. Register 1 (0x01) Field Descriptions
        2. Table 28. Register 2 (0x02) Field Descriptions
        3. Table 29. Register 3 (0x03) Field Descriptions
        4. Table 30. Register 4 (0x04) Field Descriptions
      2. 13.1.2  Register 6 (0x06)
        1. Table 31. Register 6 (0x06) Field Descriptions
      3. 13.1.3  Register 7 (0x07)
        1. Table 32. Register 7 (0x07) Field Descriptions
      4. 13.1.4  Register 8 (0x08)
        1. Table 33. Register 8 (0x08) Field Descriptions
      5. 13.1.5  Register 9 (0x09)
        1. Table 34. Register 9 (0x09) Field Descriptions
      6. 13.1.6  Register 12 (0x0C)
        1. Table 35. Register 12 (0x0C) Field Descriptions
      7. 13.1.7  Register 13 (0x0D)
        1. Table 36. Register 13 (0x0D) Field Descriptions
      8. 13.1.8  Register 14 (0x0E)
        1. Table 37. Register 14 (0x0E) Field Descriptions
      9. 13.1.9  Register 15 (0x0F)
        1. Table 38. Register 15 (0x0F) Field Descriptions
      10. 13.1.10 Register 16 (0x10)
        1. Table 39. Register 16 (0x10) Field Descriptions
      11. 13.1.11 Register 17 (0x11)
        1. Table 40. Register 17 (0x11) Field Descriptions
      12. 13.1.12 Register 18 (0x12)
        1. Table 41. Register 18 (0x12) Field Descriptions
      13. 13.1.13 Register 20 (0x14)
        1. Table 42. Register 20 (0x14) Field Descriptions
      14. 13.1.14 Register 21 (0x15)
        1. Table 43. Register 21 (0x15) Field Descriptions
      15. 13.1.15 Register 22 (0x16)
        1. Table 44. Register 22 (0x16) Field Descriptions
      16. 13.1.16 Register 23 (0x17)
        1. Table 45. Register 23 (0x17) Field Descriptions
      17. 13.1.17 Register 24 (0x18)
        1. Table 46. Register 24 (0x18) Field Descriptions
      18. 13.1.18 Register 27 (0x1B)
        1. Table 47. Register 27 (0x1B) Field Descriptions
      19. 13.1.19 Register 28 (0x1C)
        1. Table 48. Register 28 (0x1C) Field Descriptions
      20. 13.1.20 Register 29 (0x1D)
        1. Table 49. Register 29 (0x1D) Field Descriptions
      21. 13.1.21 Register 30 (0x1E)
        1. Table 50. Register 30 (0x1E) Field Descriptions
      22. 13.1.22 Register 32 (0x20)
        1. Table 51. Register 32 (0x20) Field Descriptions
      23. 13.1.23 Register 33 (0x21)
        1. Table 52. Register 33 (0x21) Field Descriptions
      24. 13.1.24 Register 34 (0x22)
        1. Table 53. Register 34 (0x22) Field Descriptions
      25. 13.1.25 Register 37 (0x25)
        1. Table 54. Register 37 (0x25) Field Descriptions
      26. 13.1.26 Register 40 (0x28)
        1. Table 55. Register 40 (0x28) Field Descriptions
      27. 13.1.27 Register 41 (0x29)
        1. Table 56. Register 41 (0x29) Field Descriptions
      28. 13.1.28 Register 42 (0x2A)
        1. Table 57. Register 42 (0x2A) Field Descriptions
      29. 13.1.29 Register 43 (0x2B)
        1. Table 58. Register 43 (0x2B) Field Descriptions
      30. 13.1.30 Register 44 (0x2C)
        1. Table 59. Register 44 (0x2C) Field Descriptions
      31. 13.1.31 Register 59 (0x3B)
        1. Table 60. Register 59 (0x3B) Field Descriptions
      32. 13.1.32 Register 60 (0x3C)
        1. Table 61. Register 60 (0x3C) Field Descriptions
      33. 13.1.33 Register 61 (0x3D)
        1. Table 62. Register 61 (0x3D) Field Descriptions
      34. 13.1.34 Register 62 (0x3E)
        1. Table 63. Register 62 (0x3E) Field Descriptions
      35. 13.1.35 Register 63 (0x3F)
        1. Table 64. Register 63 (0x3F) Field Descriptions
      36. 13.1.36 Register 64 (0x40)
        1. Table 65. Register 64 (0x40) Field Descriptions
      37. 13.1.37 Register 65 (0x41)
        1. Table 66. Register 65 (0x41) Field Descriptions
      38. 13.1.38 Register 67 (0x43)
        1. Table 67. Register 67 (0x43) Field Descriptions
      39. 13.1.39 Register 68 (0x44)
        1. Table 68. Register 68 (0x44) Field Descriptions
      40. 13.1.40 Register 69 (0x45)
        1. Table 69. Register 69 (0x45) Field Descriptions
      41. 13.1.41 Register 70 (0x46)
        1. Table 70. Register 70 (0x46) Field Descriptions
      42. 13.1.42 Register 71 (0x47)
        1. Table 71. Register 71 (0x47) Field Descriptions
      43. 13.1.43 Register 72 (0x48)
        1. Table 72. Register 72 (0x48) Field Descriptions
      44. 13.1.44 Register 73 (0x49)
        1. Table 73. Register 73 (0x49) Field Descriptions
      45. 13.1.45 Register 74 (0x4A)
        1. Table 74. Register 74 (0x4A) Field Descriptions
      46. 13.1.46 Register 75 (0x4B)
        1. Table 75. Register 75 (0x4B) Field Descriptions
      47. 13.1.47 Register 76 (0x4C)
        1. Table 76. Register 76 (0x4C) Field Descriptions
      48. 13.1.48 Register 78 (0x4E)
        1. Table 77. Register 78 (0x4E) Field Descriptions
      49. 13.1.49 Register 79 (0x4F)
        1. Table 78. Register 79 (0x4F) Field Descriptions
      50. 13.1.50 Register 83 (0x53)
        1. Table 79. Register 83 (0x53) Register Field Descriptions
      51. 13.1.51 Register 85 (0x55)
        1. Table 80. Register 85 (0x55) Register Field Descriptions
      52. 13.1.52 Register 86 (0x56)
        1. Table 81. Register 86 (0x56) Register Field Descriptions
      53. 13.1.53 Register 87 (0x57)
        1. Table 82. Register 87 (0x57) Field Descriptions
      54. 13.1.54 Register 88 (0x58)
        1. Table 83. Register 88 (0x58) Field Descriptions
      55. 13.1.55 Register 91 (0x5B)
        1. Table 84. Register 91 (0x5B) Field Descriptions
      56. 13.1.56 Register 92 (0x5C)
        1. Table 85. Register 92 (0x5C) Field Descriptions
      57. 13.1.57 Register 93 (0x5D)
        1. Table 86. Register 93 (0x5D) Field Descriptions
      58. 13.1.58 Register 94 (0x5E)
        1. Table 87. Register 94 (0x5E) Field Descriptions
      59. 13.1.59 Register 95 (0x5F)
        1. Table 88. Register 95 (0x5F) Field Descriptions
      60. 13.1.60 Register 108 (0x6C)
        1. Table 89. Register 108 (0x6C) Field Descriptions
      61. 13.1.61 Register 119 (0x77)
        1. Table 90. Register 119 (0x77) Field Descriptions
      62. 13.1.62 Register 120 (0x78)
        1. Table 91. Register 120 (0x78) Field Descriptions
    2. 13.2 Registers - Page 1
      1. 13.2.1 Register 1 (0x01)
        1. Table 92. Register 1 (0x01) Field Descriptions
      2. 13.2.2 Register 2 (0x02)
        1. Table 93. Register 2 (0x02) Field Descriptions
      3. 13.2.3 Register 6 (0x06)
        1. Table 94. Register 6 (0x06) Field Descriptions
      4. 13.2.4 Register 7 (0x07)
        1. Table 95. Register 7 (0x07) Field Descriptions
      5. 13.2.5 Register 9 (0x09)
        1. Table 96. Register 9 (0x09) Field Descriptions
  14. 14器件和文档支持
    1. 14.1 器件支持
      1. 14.1.1 器件命名规则
      2. 14.1.2 开发支持
    2. 14.2 接收文档更新通知
    3. 14.3 社区资源
    4. 14.4 商标
    5. 14.5 静电放电警告
    6. 14.6 Glossary
  15. 15机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Adjustable Amplifier Gain and Switching Frequency Selection

The voltage divider between the GVDD_REG pin and the SPK_GAIN/FREQ pin is used to set the gain and switching frequency of the amplifier. Upon start-up of the device, the voltage presented on the SPK_GAIN/FREQ pin is digitized and then decoded into a 3-bit word which is interpreted inside the TAS5782M device to correspond to a given gain and switching frequency. In order to change the SPK_GAIN or switching frequency of the amplifier, the PVDD must be cycled off and on while the new voltage level is present on the SPK_GAIN/FREQ pin.

Because the amplifier adds gain to both the signal and the noise present in the audio signal, the lowest gain setting that can meet voltage-limited output power targets should be used. Using the lowest gain setting ensures that the power target can be reached while minimizing the idle channel noise of the system. The switching frequency selection affects three important operating characteristics of the device. The three affected characteristics are the power dissipation in the device, the power dissipation in the inductor, and the target output filter for the application.

Higher switching frequencies typically result in slightly higher power dissipation in the TAS5782M device and lower dissipation in the inductor in the system, due to decreased ripple current through the inductor and increased charging and discharging current in device and parasitic capacitances. Switching at the higher of the available switching frequencies will result in lower overall dissipation in the system and lower operating temperature of the inductors. However, the thermally limited power output of the device can be decreased in this situation, because some of the TAS5782M device thermal headroom will be absorbed by the higher switching frequency. Conversely inductor heating can be reduced by using the higher switching frequency to reduce the ripple current.

Another advantage of increasing the switching frequency is that the higher frequency carrier signal can be filtered by an L-C filter with a higher corner frequency, leading to physically smaller components. Use the highest switching frequency that continues to meet the thermally limited power targets for the application. If thermal constraints require heat reduction in the TAS5782M device, use a lower switching rate.

The switching frequency of the speaker amplifier is dependent on an internal synchronizing signal, (fSYNC), which is synchronous with the sample rate. The rate of the synchronizing signal is also dependent on the sample rate. Refer to Table 13 below for details regarding how the sample rates correlate to the synchronizing signal.

Table 13. Sample Rates vs Synchronization Signal

SAMPLE RATE
[kHz]
fSYNC
[kHz]
8 96
16
32
48
96
192
11.025 88.2
22.05
44.1
88.2

Table 14 summarizes the de-code of the voltage presented to the SPK_GAIN/FREQ pin. The voltage presented to the SPK_GAIN/FREQ pin is latched in upon startup of the device. Subsequent changes require power cycling the device. A gain setting of 20 dB is recommended for nominal supply voltages of 13 V and lower, while a gain of 26 dB is recommended for supply voltages up to 26.4 V. Table 14 shows the voltage required at the SPK_GAIN/FREQ pin for various gain and switching scenarios as well some example resistor values for meeting the voltage range requirements.

Table 14. Amplifier Switching Mode vs. SPK_GAIN/FREQ Voltage

VSPK_GAIN/FREQ (V) RESISTOR EXAMPLES GAIN MODE AMPLIFIER SWITCHING FREQUENCY MODE
MIN MAX R100 (kΩ): RESISTOR TO GROUND
R101 (kΩ): RESISTOR TO GVDD_REG
6.61 7 Reserved Reserved Reserved
5.44 6.6 R100 = 750
R101 = 150
26 dBV 8 × fSYNC
4.67 5.43 R100 = 390
R101 = 150
6 × fSYNC
3.89 4.66 R100 = 220
R101 = 150
5 × fSYNC
3.11 3.88 R100 = 150
R101 = 150
4 × fSYNC
2.33 3.1 R100 = 100
R101 = 150
20 dBV 8 × fSYNC
1.56 2.32 R100 = 56
R101 = 150
6 × fSYNC
0.78 1.55 R100 = 33
R101 = 150
5 × fSYNC
0 0.77 R100 = 8.2
R101 = 150
4 × fSYNC