ZHCSI92D May   2018  – November 2020 TAS5805M

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
      1. 6.7.1 Bridge Tied Load (BTL) Configuration Curves with 1SPW Mode
      2. 6.7.2 Bridge Tied Load (BTL) Configuration Curves with BD Mode
      3. 6.7.3 Bridge Tied Load (BTL) Configuration Curves with Ferrite Bead + Capacitor as the Output Filter
      4. 6.7.4 Parallel Bridge Tied Load (PBTL) Configuration with 1SPW Modulation
      5. 6.7.5 Parallel Bridge Tied Load (PBTL) Configuration with BD Modulation
  8. Parameter Measurement Information
  9. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Power Supplies
      2. 7.3.2 Device Clocking
      3. 7.3.3 Serial Audio Port – Clock Rates
      4. 7.3.4 Clock Halt Auto-recovery
      5. 7.3.5 Sample Rate on the Fly Change
      6. 7.3.6 Serial Audio Port - Data Formats and Bit Depths
      7. 7.3.7 Digital Audio Processing
      8. 7.3.8 Class D Audio Amplifier
        1. 7.3.8.1 Speaker Amplifier Gain Select
        2. 7.3.8.2 Class D Loop Bandwidth and Switching Frequency Setting
    4. 7.4 Device Functional Modes
      1. 7.4.1 Software Control
      2. 7.4.2 Speaker Amplifier Operating Modes
        1. 7.4.2.1 BTL Mode
        2. 7.4.2.2 PBTL Mode
      3. 7.4.3 Low EMI Modes
        1. 7.4.3.1 Spread Spectrum
        2. 7.4.3.2 Channel to Channel Phase Shift
        3. 7.4.3.3 Multi-Devices PWM Phase Synchronization
      4. 7.4.4 Thermal Foldback
      5. 7.4.5 Device State Control
      6. 7.4.6 Device Modulation
        1. 7.4.6.1 BD Modulation
        2. 7.4.6.2 1SPW Modulation
        3. 7.4.6.3 Hybrid Modulation
    5. 7.5 Programming and Control
      1. 7.5.1 I2 C Serial Communication Bus
      2. 7.5.2 Slave Address
        1. 7.5.2.1 Random Write
        2. 7.5.2.2 Sequential Write
        3. 7.5.2.3 Random Read
        4. 7.5.2.4 Sequential Read
        5. 7.5.2.5 DSP Memory Book, Page and BQ Coefficients Update
        6. 7.5.2.6 Example Use
        7. 7.5.2.7 Checksum
          1. 7.5.2.7.1 Cyclic Redundancy Check (CRC) Checksum
          2. 7.5.2.7.2 Exclusive or (XOR) Checksum
      3. 7.5.3 Control via Software
        1. 7.5.3.1 Startup Procedures
        2. 7.5.3.2 Shutdown Procedures
        3. 7.5.3.3 Protection and Monitoring
          1. 7.5.3.3.1 Overcurrent Shutdown (OCSD)
          2. 7.5.3.3.2 Speaker DC Protection
          3. 7.5.3.3.3 Device Over Temperature Protection
          4. 7.5.3.3.4 Device Over Voltage/Under Voltage Protection
            1. 7.5.3.3.4.1 Over Voltage Protection
            2. 7.5.3.3.4.2 Under Voltage Protection
          5. 7.5.3.3.5 Clock Fault
    6. 7.6 Register Maps
      1. 7.6.1 CONTROL PORT Registers
  10. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Bootstrap Capacitors
      2. 8.1.2 Inductor Selections
      3. 8.1.3 Power Supply Decoupling
      4. 8.1.4 Output EMI Filtering
    2. 8.2 Typical Applications
      1. 8.2.1 2.0 (Stereo BTL) System
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedures
          1. 8.2.1.2.1 Step 1: Hardware Integration
          2. 8.2.1.2.2 Step 2: Speaker Tuning
          3. 8.2.1.2.3 Step 3: Software Integration
        3. 8.2.1.3 Application Curves
          1. 8.2.1.3.1 Audio Performance
          2. 8.2.1.3.2 EN55022 Conducted Emissions Results with Ferrite Bead as output filter
          3. 8.2.1.3.3 EN55022 Radiated Emissions Results with Ferrite Bead as output filter
      2. 8.2.2 MONO (PBTL) Systems
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
      3. 8.2.3 Advanced 2.1 System (Two TAS5805M Devices)
  11. Power Supply Recommendations
    1. 9.1 DVDD Supply
    2. 9.2 PVDD Supply
  12. Layout
    1. 9.1 Layout Guidelines
      1. 9.1.1 General Guidelines for Audio Amplifiers
      2. 9.1.2 Importance of PVDD Bypass Capacitor Placement on PVDD Network
      3. 9.1.3 Optimizing Thermal Performance
        1. 9.1.3.1 Device, Copper, and Component Layout
        2. 9.1.3.2 Stencil Pattern
          1. 9.1.3.2.1 PCB footprint and Via Arrangement
          2. 9.1.3.2.2 Solder Stencil
    2. 9.2 Layout Example
  13. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Device Nomenclature
      2. 10.1.2 Development Support
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 支持资源
    4. 10.4 Trademarks
    5. 10.5 静电放电警告
    6. 10.6 术语表
  14. 11Mechanical, Packaging, and Orderable Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • PWP|28
散热焊盘机械数据 (封装 | 引脚)
订购信息

Importance of PVDD Bypass Capacitor Placement on PVDD Network

Placing the bypassing and decoupling capacitors close to supply has long been understood in the industry. This applies to DVDD, AVDD, GVDD and PVDD. However, the capacitors on the PVDD net for the TAS5805M device deserve special attention.

The small bypass capacitors on the PVDD lines of the DUT must be placed as close to the PVDD pins as possible. Not only dose placing these device far away from the pins increase the electromagnetic interference in the system, but doing so can also negatively affect the reliability of the device. Placement of these components too far from the TAS5805M device can cause ringing on the output pins that can cause the voltage on the output pin to exceed the maximum allowable ratings shown in the Absolute Maximum Ratings table, damaging the deice . For that reason, the capacitors on the PVDD net must be no further away from their associated PVDD pins than what is shown in the example layouts in the Section 9.2 section.