ZHCS034C January   2011  – August 2018 TCA4311A

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      简化原理图
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Rise-Time Accelerators
      2. 8.3.2 READY Digital Output
      3. 8.3.3 EN Low Current Disable
    4. 8.4 Device Functional Modes
      1. 8.4.1 Start-Up
      2. 8.4.2 Connection Circuitry
      3. 8.4.3 Missing ACK Event
        1. 8.4.3.1 System Impact
        2. 8.4.3.2 System Workaround
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 Input to Output Offset Voltage
        2. 9.2.1.2 Propagation Delays
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Resistor Pull-Up Value Selection
      3. 9.2.3 Application Curves
      4. 9.2.4 Live Insertion and Capacitance Buffering CompactPCI Application
        1. 9.2.4.1 Design Requirements
        2. 9.2.4.2 Detailed Design Procedure
        3. 9.2.4.3 Application Curves
      5. 9.2.5 Live Insertion and Capacitance Buffering PCI Application
        1. 9.2.5.1 Design Requirements
        2. 9.2.5.2 Detailed Design Procedure
        3. 9.2.5.3 Application Curves
      6. 9.2.6 Repeater/Bus Extender Application
        1. 9.2.6.1 Design Requirements
        2. 9.2.6.2 Detailed Design Procedure
        3. 9.2.6.3 Application Curves
      7. 9.2.7 Systems With Disparate Supply Voltages
        1. 9.2.7.1 Design Requirements
        2. 9.2.7.2 Detailed Design Procedure
        3. 9.2.7.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 接收文档更新通知
    2. 12.2 社区资源
    3. 12.3 商标
    4. 12.4 静电放电警告
    5. 12.5 术语表
  13. 13机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Propagation Delays

During a rising edge, the rise-time on each side is determined by the combined pull-up current of the TCA4311A boost current and the bus resistor and the equivalent capacitance on the line. If the pull-up currents are the same, a difference in rise-time occurs which is directly proportional to the difference in capacitance between the two sides. This effect is displayed in Figure 10 for VCC = 3.3 V and a 10-kΩ pull-up resistor on each side (50 pF on one side and 150 pF on the other). Since the output side has less capacitance than the input, it rises faster and the effective tPLH is negative.

There is a finite propagation delay, tPHL, through the connection circuitry for falling waveforms. Figure 11 shows the falling edge waveforms for the same VCC, pull-up resistors and equivalent capacitance conditions as used in Figure 10. An external NMOS device pulls down the voltage on the side with 150 pF capacitance; the TCA4311A pulls down the voltage on the opposite side, with a delay of 55 ns. This delay is always positive and is a function of supply voltage, temperature and the pull-up resistors and equivalent bus capacitances on both sides of the bus. The Typical Characteristics section shows tPHL as a function of temperature and voltage for 10-kΩ pull-up resistors and 100 pF equivalent capacitance on both sides of the part. By comparison with Figure 11, the VCC = 3.3 V curve shows that increasing the capacitance from 50 pF to 100 pF results in a tPHL increase from 55 ns to 75 ns. Larger output capacitances translate to longer delays (up to 150 ns). Users must quantify the difference in propagation times for a rising edge versus a falling edge in their systems and adjust setup and hold times accordingly.