ZHCSKD1C October   2019  – January 2021 TCA9511A

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Hot bus insertion
      2. 8.3.2 Pre-charge voltage
      3. 8.3.3 Rise time accelerators
      4. 8.3.4 Bus ready output indicator
      5. 8.3.5 Powered-off high impedance for I2C and I/O pins
      6. 8.3.6 Supports clock stretching and arbitration
    4. 8.4 Device Functional Modes
      1. 8.4.1 Start-up and precharge
      2. 8.4.2 Bus idle
      3. 8.4.3 Bus active
  9. Application Information Disclaimer
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 Series connections
        2. 9.2.1.2 Multiple connections to a common node
        3. 9.2.1.3 Propagation delays
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Typical Application on a Backplane
      1. 9.3.1 Design Requirements
      2. 9.3.2 Detailed Design Procedure
  10. 10Power Supply Recommendations
    1. 10.1 Power Supply Best Practices
    2. 10.2 Power-on Reset Requirements
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Receiving Notification of Documentation Updates
    2. 12.2 支持资源
    3. 12.3 Trademarks
    4. 12.4 静电放电警告
    5. 12.5 术语表
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Typical Application on a Backplane

As shown in Figure 9-6, the TCA9511A is used in a backplane connection. The TCA9511A is placed on the I/O peripheral card and connects the I2C devices on the card to the backplane safely upon a hot insertion event. Note that if the I/O cards were plugged directly into the backplane, all of the backplane and card capacitances would add directly together, making rise time and fall time requirements difficult to meet. Placing a bus buffer on the edge of each card; however, isolates the card capacitance from the backplane. For a given I/O card, the TCA9511A drives the capacitance of everything on the card and the backplane must drive only the capacitance of the bus buffer, which is less than 10 pF, the connector, trace, and all additional cards on the backplane.

GUID-091C0778-18E4-4E70-ACB0-A2F8EDC39825-low.gif Figure 9-6 Backplane Application Schematic