ZHCSP01 July   2022 TCAL9539

ADVANCE INFORMATION  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 I2C Bus Timing Requirements
    8. 6.8 Switching Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1 I/O Port
      2. 8.3.2 Adjustable Output Drive Strength
      3. 8.3.3 Interrupt Output (INT)
      4. 8.3.4 Reset Input (RESET)
      5. 8.3.5 Software Reset Call
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power-On Reset
    5. 8.5 Programming
      1. 8.5.1 I2C Interface
    6. 8.6 Register Maps
      1. 8.6.1 Device Address
      2. 8.6.2 Control Register and Command Byte
      3. 8.6.3 Register Descriptions
      4. 8.6.4 Bus Transactions
        1. 8.6.4.1 Writes
        2. 8.6.4.2 Reads
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Minimizing ICC When I/Os Control LEDs
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
      1. 9.3.1 Power-On Reset Requirements
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 接收文档更新通知
    2. 10.2 支持资源
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 术语表
  11. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information
    2. 11.2 Mechanical Data

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

I2C Interface

The bidirectional I2C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to a positive supply through a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

I2C communication with this device is initiated by a controller sending a Start condition, a high-to-low transition on the SDA input/output, while the SCL input is high (see Figure 8-3). After the Start condition, the device address byte is sent, most significant bit (MSB) first, including the data direction bit (R/ W).

After receiving the valid address byte, this device responds with an acknowledge (ACK), a low on the SDA input/output during the high of the ACK-related clock pulse. The address input of the responder device must not be changed between the Start and the Stop conditions.

On the I2C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high pulse of the clock period, as changes in the data line at this time are interpreted as control commands (Start or Stop) (see Figure 8-4).

A Stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the controller (see Figure 8-3).

Any number of data bytes can be transferred from the transmitter to receiver between the Start and the Stop conditions. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before the receiver can send an ACK bit. The device that acknowledges must pull down the SDA line during the ACK clock pulse, so that the SDA line is stable low during the high pulse of the ACK-related clock period (see Figure 8-5). When a responder receiver is addressed, it must generate an ACK after each byte is received. Similarly, the controller must generate an ACK after each byte that it receives from the responder transmitter. Setup and hold times must be met to ensure proper operation.

A controller receiver signals an end of data to the responder transmitter by not generating an acknowledge (NACK) after the last byte has been clocked out of the responder. This is done by the controller receiver by holding the SDA line high. In this event, the transmitter must release the data line to enable the controller to generate a Stop condition.

GUID-FA0603DA-87EC-462D-9EB2-1610896DDB50-low.gifFigure 8-3 Definition of Start and Stop Conditions
GUID-925ED88D-90B4-4D09-800E-9CFEB9F8706B-low.gifFigure 8-4 Bit Transfer
GUID-739D0659-830A-460B-AB1E-7D48021BC746-low.gifFigure 8-5 Acknowledgment on the I2C Bus
Table 8-1 Interface Definition
BYTE BIT
7 (MSB) 6 5 4 3 2 1 0 (LSB)
Device I2C address H H H L H A1 A0 R/ W
I/O data bus P07 P06 P05 P04 P03 P02 P01 P00
P17 P16 P15 P14 P13 P12 P11 P10