ZHCSGC3E March   2016  – April 2021 TCAN1051H , TCAN1051HG , TCAN1051HGV , TCAN1051HV

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 ESD Ratings, Specifications
    4. 6.4 Recommended Operating Conditions
    5. 6.5 Thermal Information
    6. 6.6 Power Rating
    7. 6.7 Electrical Characteristics
    8. 6.8 Switching Characteristics
    9. 6.9 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 TXD Dominant Timeout (DTO)
      2. 8.3.2 Thermal Shutdown (TSD)
      3. 8.3.3 Undervoltage Lockout
      4. 8.3.4 Unpowered Device
      5. 8.3.5 Floating Terminals
      6. 8.3.6 CAN Bus Short Circuit Current Limiting
      7. 8.3.7 Digital Inputs and Outputs
        1. 8.3.7.1 5-V VCC Only Devices (Devices without the "V" Suffix):
        2. 8.3.7.2 5 V VCC with VIO I/O Level Shifting (Devices with the "V" Suffix):
    4. 8.4 Device Functional Modes
      1. 8.4.1 CAN Bus States
      2. 8.4.2 Normal Mode
      3. 8.4.3 Silent Mode
      4. 8.4.4 Driver and Receiver Function Tables
  9. Application Information Disclaimer
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 Bus Loading, Length and Number of Nodes
      2. 9.2.2 Detailed Design Procedures
        1. 9.2.2.1 CAN Termination
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • D|8
散热焊盘机械数据 (封装 | 引脚)
订购信息

CAN Bus Short Circuit Current Limiting

The device has two protection features that limit the short circuit current when a CAN bus line is short-circuit fault condition: driver current limiting (both dominant and recessive states) and TXD dominant state time out to prevent permanent higher short circuit current of the dominant state during a system fault. During CAN communication the bus switches between dominant and recessive states, thus the short circuit current may be viewed either as the instantaneous current during each bus state or as an average current of the two states. For system current (power supply) and power considerations in the termination resistors and common-mode choke ratings, use the average short circuit current. Determine the ratio of dominant and recessive bits by the data in the CAN frame plus the following factors of the protocol and PHY that force either recessive or dominant at certain times:

  • Control fields with set bits
  • Bit stuffing
  • Interframe space
  • TXD dominant time out (fault case limiting)

These ensure a minimum recessive amount of time on the bus even if the data field contains a high percentage of dominant bits. The short circuit current of the bus depends on the ratio of recessive to dominant bits and their respective short circuit currents. The average short circuit current may be calculated with the following formula:

Equation 1. IOS(AVG) = %Transmit × [(%REC_Bits × IOS(SS)_REC) + (%DOM_Bits × IOS(SS)_DOM)] + [%Receive × IOS(SS)_REC]

Where:

  • IOS(AVG) is the average short circuit current
  • %Transmit is the percentage the node is transmitting CAN messages
  • %Receive is the percentage the node is receiving CAN messages
  • %REC_Bits is the percentage of recessive bits in the transmitted CAN messages
  • %DOM_Bits is the percentage of dominant bits in the transmitted CAN messages
  • IOS(SS)_REC is the recessive steady state short circuit current
  • IOS(SS)_DOM is the dominant steady state short circuit current

Note:

Consider the short circuit current and possible fault cases of the network when sizing the power ratings of the termination resistance and other network components.