SLOS382E September 2001 – May 2015 THS3122 , THS3125
PRODUCTION DATA.
NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.
The wide bandwidth, high slew rate, and high output drive current of the THS3125 and THS3122 match the demands for video distribution to deliver video signals down multiple cables. To ensure high signal quality with minimal degradation of performance, a 0.1-dB gain flatness should be at least 7x the passband frequency to minimize group delay variations from the amplifier. A high slew rate minimizes distortion of the video signal, and supports component video and RGB video signals that require fast transition times and fast settling times for high signal quality. Figure 40 illustrates a typical video distribution amplifier application configuration.
Applications such as FET drivers and line drivers can be highly capacitive and cause stability problems for high-speed amplifiers.
Figure 41 through Figure 47 show recommended methods for driving capacitive loads. The basic idea is to use a resistor or ferrite chip to isolate the phase shift at high frequency caused by the capacitive load from the amplifier feedback path. See Figure 41 for recommended resistor values versus capacitive load.
Placing a small series resistor, RISO, between the amplifier output and the capacitive load, as shown in Figure 42, is an easy way of isolating the load capacitance.
Using a ferrite chip in place of RISO, as Figure 43 shows, is another approach of isolating the output of the amplifier. The ferrite impedance characteristic versus frequency is useful to maintain the low frequency load independence of the amplifier while isolating the phase shift caused by the capacitance at high frequency. Use a ferrite with similar impedance to RISO, 20 Ω to 50 Ω, at 100 MHz and low impedance at dc.
Figure 44 shows another method used to maintain the low-frequency load independence of the amplifier while isolating the phase shift caused by the capacitance at high frequency. At low frequency, feedback is mainly from the load side of RISO. At high frequency, the feedback is mainly via the 27-pF capacitor. The resistor RIN in series with the negative input is used to stabilize the amplifier and should be equal to the recommended value of RF at unity gain. Replacing RIN with a ferrite of similar impedance at about 100 MHz as shown in Figure 45 gives similar results with reduced dc offset and low frequency noise.
Figure 46 shows a configuration that uses two amplifiers in parallel to double the output drive current to larger capacitive loads. This technique is used when more output current is needed to charge and discharge the load faster as when driving large FET transistors.
Figure 47 shows a push-pull FET driver circuit typical of ultrasound applications with isolation resistors to isolate the gate capacitance from the amplifier.