ZHCSJ05C November   2018  – March 2019 THVD1419 , THVD1429

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      THVD1419 和 THVD1429 方框图
  4. 修订历史记录
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 ESD Ratings [IEC]
    4. 7.4 Recommended Operating Conditions
    5. 7.5 Thermal Information
    6. 7.6 Power Dissipation
    7. 7.7 Electrical Characteristics
    8. 7.8 Switching Characteristics
    9. 7.9 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagrams
    3. 9.3 Feature Description
      1. 9.3.1 Electrostatic Discharge (ESD) Protection
      2. 9.3.2 Electrical Fast Transient (EFT) Protection
      3. 9.3.3 Surge Protection
      4. 9.3.4 Failsafe Receiver
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
        1. 10.2.1.1 Data Rate and Bus Length
        2. 10.2.1.2 Stub Length
        3. 10.2.1.3 Bus Loading
      2. 10.2.2 Detailed Design Procedure
      3. 10.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13器件和文档支持
    1. 13.1 器件支持
    2. 13.2 第三方米6体育平台手机版_好二三四免责声明
    3. 13.3 相关链接
    4. 13.4 接收文档更新通知
    5. 13.5 社区资源
    6. 13.6 商标
    7. 13.7 静电放电警告
    8. 13.8 术语表
  14. 14机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Device Functional Modes

When the driver enable pin, DE, is logic high, the differential outputs A and B follow the logic states at data input D. A logic high at D causes A to turn high and B to turn low. In this case the differential output voltage defined as VOD = VA – VB is positive. When D is low, the output states reverse: B turns high, A becomes low, and VOD is negative.

When DE is low, both outputs turn high-impedance. In this condition the logic state at D is irrelevant. The DE pin has an internal pull-down resistor to ground, thus when left open the driver is disabled (high-impedance) by default. The D pin has an internal pull-up resistor to VCC, thus, when left open while the driver is enabled, output A turns high and B turns low.

Table 1. Driver Function Table

INPUT ENABLE OUTPUTS FUNCTION
D DE A B
H H H L Actively drive bus high
L H L H Actively drive bus low
X L Z Z Driver disabled
X OPEN Z Z Driver disabled by default
OPEN H H L Actively drive bus high by default

When the receiver enable pin, RE, is logic low, the receiver is enabled. When the differential input voltage defined as VID = VA – VB is higher than the positive input threshold, VTH+, the receiver output, R, turns high. When VID is lower than the negative input threshold, VTH-, the receiver output, R, turns low. If VID is between VTH+ and VTH- the output is indeterminate.

When RE is logic high or left open, the receiver output is high-impedance and the magnitude and polarity of VID are irrelevant. Internal biasing of the receiver inputs causes the output to go failsafe-high when the transceiver is disconnected from the bus (open-circuit), the bus lines are shorted to one another (short-circuit), or the bus is not actively driven (idle bus).

Table 2. Receiver Function Table

DIFFERENTIAL INPUT ENABLE OUTPUT FUNCTION
VID = VA – VB RE R
VTH+ < VID L H Receive valid bus high
VTH- < VID < VTH+ L ? Indeterminate bus state
VID < VTH- L L Receive valid bus low
X H Z Receiver disabled
X OPEN Z Receiver disabled by default
Open-circuit bus L H Fail-safe high output
Short-circuit bus L H Fail-safe high output
Idle (terminated) bus L H Fail-safe high output