ZHCSSR6B August   2023  – April 2024 THVD4431

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  ESD Ratings [IEC]
    4. 5.4  Recommended Operating Conditions
    5. 5.5  Thermal Information
    6. 5.6  Power Dissipation
    7. 5.7  Electrical Characteristics
    8. 5.8  Switching Characteristics_RS-485_500kbps
    9. 5.9  Switching Characteristics_RS-485_20Mbps
    10. 5.10 Switching Characteristics, Driver_RS232
    11. 5.11 Switching Characteristics, Receiver_RS232
    12. 5.12 Switching Characteristics_MODE switching
    13. 5.13 Switching Characteristics_RS-485_Termination resistor
    14. 5.14 Switching Characteristics_Loopback mode
    15. 5.15 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1 Integrated IEC ESD and EFT Protection
      2. 7.3.2 Protection Features
      3. 7.3.3 RS-485 Receiver Fail-Safe Operation
      4. 7.3.4 Low-Power Shutdown Mode
      5. 7.3.5 On-chip Switchable Termination Resistor
      6. 7.3.6 Operational Data Rate
      7. 7.3.7 Diagnostic Loopback
      8. 7.3.8 Integrated Charge pump for RS-232
    4. 7.4 Device Functional Modes
      1. 7.4.1 RS-485 Functionality
      2. 7.4.2 RS-232 Functionality
      3. 7.4.3 Mode Control
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 Data Rate and Bus Length for RS-485
        2. 8.2.1.2 Stub Length for RS-485 Network
        3. 8.2.1.3 Bus Loading for RS-485 Network
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 第三方米6体育平台手机版_好二三四免责声明
    2. 9.2 接收文档更新通知
    3. 9.3 支持资源
    4. 9.4 Trademarks
    5. 9.5 静电放电警告
    6. 9.6 术语表
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Electrical Characteristics

over operating free-air temperature range (unless otherwise noted). All typical values are at 25°C and supply voltage of VCC = 5 V, VIO = 3.3 V , unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Driver_RS-485
|VOD| Driver differential output voltage magnitude RL = 60 Ω, –7 V ≤ Vtest ≤ 12 V (See Figure 6-1 ) 1.5 2 V
RL = 60 Ω, –7 V ≤ Vtest ≤ 12 V, 4.5 V ≤ VCC ≤ 5.5 V (See Figure 6-1 ) 2.1 3 V
RL = 100 Ω (See Figure 6-2 ) 2 2.5 V
RL = 54 Ω, 4.5 V ≤ VCC ≤ 5.5 V (See Figure 6-2 ) 2.1 3.3 V
RL = 54 Ω (See Figure 6-2 ) 1.5 3.3 V
Δ|VOD| Change in magnitude of differential output voltage RL = 54 Ω or 100 Ω (See Figure 6-2 ) –50 50 mV
VOC Common-mode output voltage RL = 54 Ω or 100 Ω (See Figure 6-2 ) VCC/2 3 V
ΔVOC(SS) Change in steady-state common-mode output voltage RL = 54 Ω or 100 Ω (See Figure 6-2 ) –50 50 mV
IOS Short-circuit output current (bus terminals) DIR = VIO, -7 V ≤ (VR2 or VR1) ≤ 12 V, or R1 shorted to R2   –250 250 mA
IOZD Driver High impedance output leakage current on R1 and R2 in Full duplex mode MODE2, MODE1, MODE0 = 011 , TERM_TX = GND, DIR = GND, VCC = GND or 5.5V, VO = -7V, +12V -125 125 µA
MODE2, MODE1, MODE0 = 011, TERM_TX = VIO, DIR = GND, VCC = 5.5V, VO = -7V, +12V - 325 350 µA
Receiver_RS-485
II Bus input current (termination disabled) Half and full duplex modes, DIR = 0 V, VCC and VIO = 0 V or 5.5 V VI = 12 V 75 125 μA
VI = –7 V –125 –70 μA
IRXT Receiver bus input leakage current with termination enabled Full duplex mode, VCC and VIO = 5.5 V, TERM_RX = VIO VI = - 7 to 12 V -325 325 μA
VTH+ Positive-going input threshold voltage(1) Over common-mode range of - 7 V to 12 V - 70 - 40 mV
VTH- Negative-going input threshold voltage(1) –200 –150 mV
VHYS Input hysteresis 25 80 mV
CA,B Input differential capacitance Measured between R3 and R4, f = 1 MHz 45 pF
VOH Output high voltage, L2 pin IOH = –4 mA, VIO = 3 to 3.6 V or 4.5 V to 5.5 V VIO – 0.4 VIO – 0.2 V
VOL Output low voltage, L2 pin IOL = 4 mA, VIO = 3 to 3.6 V or 4.5 V to 5.5 V 0.2 0.4 V
VOH Output high voltage, L2 pin IOH = –2 mA, VIO = 1.65 to 1.95 V or 2.25 V to 2.75 V VIO – 0.4 VIO – 0.2 V
VOL Output low voltage, L2 pin IOL = 2 mA, VIO = 1.65 to 1.95 V or 2.25 V to 2.75 V 0.2 0.4 V
IOZ Output high-impedance current, L2 pin VO = 0 V or VIO, DIR = VIO, MODE2, MODE1, MODE0= 010 (half duplex mode) –2 2 µA
Driver_RS-232
VOH High-level output voltage All DOUT (R3, R4, R6) at RL = 3 kΩ to GND, DIN (L3, L4, L6) = GND; VCC = 3 V to 3.6 V 5 5.5 7.2 V
VOL Low-level output voltage All DOUT (R3, R4, R6) at RL = 3 kΩ to GND, DIN (L3, L4, L6) = VIO ; VCC = 3 V to 3.6 V –7.2 –5.5 -5 V
VOH High-level output voltage All DOUT (R3, R4, R6) at RL = 3 kΩ to GND, DIN (L3, L4, L6) = GND; VCC = 4.5 V to 5.5 V 7.8 9 11 V
VOL Low-level output voltage All DOUT (R3, R4, R6) at RL = 3 kΩ to GND, DIN (L3, L4, L6) = VIO ; VCC = 4.5 V to 5.5 V –11 –9 -7.8 V
IOS Short-circuit output current (2) VCC = 3.6 V VO = 0 V ±35 ±60 mA
VCC = 5.5 V VO = 0 V
ro Output resistance on R3, R4, R6 VCC = 0 V, V+ = 0 V, and V = 0 V VO = ±2 V 300 10M
Ioff Output leakage current on R3, R4, R6 SHDN = GND VO = ±12 V VCC = 3 to 3.6 V ±125 μA
VO = ±10 V VCC = 4.5 to 5.5 V ±125 μA
Receiver_RS-232
VOH High-level output voltage L1/L2/L5/L7/L8 IOH = –4 mA, VIO = 3 to 3.6 V or 4.5 V to 5.5 V     VIO – 0.5 VIO – 0.2 V
IOH = –2 mA, VIO = 1.65 to 1.95 V or 2.25 V to 2.75 V     VIO – 0.48 VIO – 0.2 V
VOL Low-level output voltage L1/L2/L5/L7/L8 IOL = 4 mA, VIO = 3 to 3.6 V or 4.5 V to 5.5 V     0.4 V
IOL = 2 mA, VIO = 1.65 to 1.95 V or 2.25 V to 2.75 V     0.4 V
VIT+ Positive-going input threshold voltage on RS-232 receiver inputs (R1, R2, R5, R7, R8) VCC = 3.3 V 1.6 2.4 V
VCC = 5 V 1.9 2.4 V
VIT– Negative-going input threshold voltage on RS-232 receiver inputs (R1, R2, R5, R7, R8) VCC = 3.3 V 0.6 1.1 V
VCC = 5 V 0.8 1.4 V
Vhys Input hysteresis on receiver inputs (VIT+ – VIT–) 0.4 0.5 V
Ioff Output leakage current on receiver output pins  L1/L2/L5/L7/L8 SHDN = 0 V  ±0.05 ±10 μA
rI Input resistance on receiver input pins -15 V ≤ VI ≤ 15 V 3 5 7
Thermal Protection
TSHDN Thermal shutdown threshold Temperature rising 150 170 °C
THYS Thermal shutdown hysteresis 15 °C
Supply
UVVCC (rising) Rising under-voltage threshold on VCC 2.5 2.8 V
UVVCC (falling) Falling under-voltage threshold on VCC 1.9 2.1 V
UVVCC(hys) Hysteresis on under-voltage of VCC 100 400 mV
UVVIO (rising) Rising under-voltage threshold on VIO 1.5 1.6 V
UVVIO (falling) Falling under-voltage threshold on VIO 1.2 1.4 V
UVVIO(hys) Hysteresis on under-voltage of VIO 85 100 mV
ICC_SHDN Supply current in shutdown mode VCC = 4.5 V to 5.5 V, SHDN = GND, All other logic input pins floating, no load on bus, TA ≤ 125 ℃ 5 20 µA
VCC = 3 V to 3.6 V, SHDN = GND, All other logic input pins floating, no load on bus, TA ≤ 125 ℃ 3 15 µA
VCC = 4.5 V to 5.5 V, SHDN = GND, All other logic input pins floating, no load on bus, TA ≤ 105 ℃ 5 15 µA
VCC = 3 V to 3.6 V, SHDN = GND, All other logic input pins floating, no load on bus, TA ≤ 105 ℃ 3 10 µA
IIO_SHDN Logic supply current in shutdown mode VIO = 1.65 V to 5.5 V, SHDN = GND, All other logic input pins floating 2 µA
ICC_485 Supply current (quiescent), VCC = 4.5 V to 5.5 V
TERM_RX, TERM_TX= Floating or low, SLR = X
 
Driver and receiver enabled, DIR = VIO, MODE2, MODE1, MODE0 = 011 (Full duplex) No load 1.7 3.4 mA
Driver enabled, receiver disabled, DIR = VIO, MODE2, MODE1, MODE0 = 010 (Half duplex) No load 1.3 2.8 mA
Driver disabled, receiver enabled, DIR = GND, MODE2, MODE1, MODE0 = 010 (Half duplex) No load 0.8 1.5 mA
ICC_485 Supply current (quiescent), VCC = 3 V to 3.6 V
TERM_RX, TERM_TX= Floating or low, SLR = X
Driver and receiver enabled, DIR = VIO, MODE2, MODE1, MODE0 = 011 (Full duplex) No load 1.5 2.8 mA
Driver enabled, receiver disabled, DIR = VIO, MODE2, MODE1, MODE0 = 010 (Half duplex) No load 1 2.3 mA
Driver disabled, receiver enabled, DIR = GND, MODE2, MODE1, MODE0 = 010 (Half duplex) No load 0.7 1.3 mA
IIO_485 Logic supply current (quiescent), VIO = 3 to 3.6 V
TERM_RX, TERM_TX= Floating 
Driver disabled, Receiver enabled, SLR = GND, DIR = GND; MODE2, MODE1, MODE0 = 010 (half duplex) No load 7 17 µA
Driver disabled, Receiver enabled, SLR = VIO; DIR = GND; MODE2, MODE1, MODE0 = 010 (half duplex) No load 8 21 µA
ICCDT_485 Supply current in RS-485 driver termination mode Driver enabled with termination ON; MODE2, MODE1, MODE0 = 011 (full duplex) DIR= VIO, TERM_TX = VIO 38 50 mA
ICCRT_485 Supply current in RS-485 receiver termination mode Receiver enabled with termination ON; MODE2, MODE1, MODE0 = 011 (full duplex) DIR = GND, TERM_RX = VIO 1 1.5 mA
ICC_RS232 Supply current in RS-232 mode MODE2, MODE1, MODE0 = 001, SHDN = VIO; other logic inputs floating No load 4 6 mA
ICC_RS232_LB Supply current in RS-232 loopback mode MODE2 = x, MODE1 = 0, MODE0 = 0; L3 = L4 = L6 = static logic high, -40 ℃ ≤ TA ≤ 85 ℃ No extra load on RS-232 drivers or on logic output 25 31 mA
ICC_RS485_LB Supply current in RS-485 loopback mode MODE2 = MODE1= MODE0 = VIO ; L3 = static logic high No load on bus or logic output 3 4 mA
On-Chip termination resistor_RS-485
RTERM_TX 120 Ω termination across Driver output R1/R2 terminals MODE2, MODE1, MODE0 = 011 (Full duplex) or 010 (half duplex); DIR = GND, TERM_TX = VIO, VR2R1 = 2 V, VR1 = -7 V, 0 V, 10 V; See Figure 6-9  102 120 138
RTERM_RX 120 Ω termination across receiver output R3/R4 terminals MODE2, MODE1, MODE0 = 011 (Full duplex); TERM_RX = VIO, VR3R4 = 2 V, VR4 = -7 V, 0 V, 10 V; See Figure 6-9  102 120 138
Logic
IIN Input current (L3, L4, L6, DIR, SHDN, SLR, TERM_TX, TERM_RX, MODE2, MODE1, MODE0) 1.65 V ≤ VIO ≤ 5.5 V, 0 V ≤ VIN ≤ VIO -20 5 µA
VIT+(IN) Rising threshold: logic inputs 1.65 V ≤ VIO ≤ 5.5 V 0.6*VIO 0.7*VIO V
VIT-(IN) Falling threshold: logic inputs 0.3*VIO 0.4*VIO V
VIN(HYS) Input threshold: logic inputs  0.1*VIO 0.2*VIO V
Under any specific conditions, VTH+ is assured to be at least VHYS higher than VTH–.

Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one
output should be shorted at a time.