ZHCSK68B August   2019  – June 2022 TLIN1028-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. 说明(续)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 ESD Ratings, IEC Specification
    4. 7.4 Recommended Operating Conditions
    5. 7.5 Thermal Information
    6. 7.6 Power Supply Characteristics
    7. 7.7 Electrical Charateristics
    8. 7.8 AC Switching Characteristics
    9. 7.9 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Test Circuit: Diagrams and Waveforms
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 LIN Pin
        1. 9.3.1.1 LIN Transmitter Characteristics
        2. 9.3.1.2 LIN Receiver Characteristics
          1. 9.3.1.2.1 Termination
      2. 9.3.2 TXD (Transmit Input)
      3. 9.3.3 RXD (Receive Output)
      4. 9.3.4 VSUP (Supply Voltage)
      5. 9.3.5 GND (Ground)
      6. 9.3.6 EN (Enable Input)
      7. 9.3.7 nRST (Reset Output)
      8. 9.3.8 VCC (Supply Output)
      9. 9.3.9 Protection Features
        1. 9.3.9.1 TXD Dominant Time Out (DTO)
        2. 9.3.9.2 Bus Stuck Dominant System Fault: False Wake Up Lockout
        3. 9.3.9.3 Thermal Shutdown
        4. 9.3.9.4 Under Voltage on VSUP
        5. 9.3.9.5 Unpowered Device and LIN Bus
    4. 9.4 Device Functional Modes
      1. 9.4.1 Normal Mode
      2. 9.4.2 Sleep Mode
      3. 9.4.3 Standby Mode
      4. 9.4.4 Wake-Up Events
        1. 9.4.4.1 Wake-Up Request (RXD)
      5. 9.4.5 Mode Transitions
      6. 9.4.6 Voltage Regulator
        1. 9.4.6.1 VCC
        2. 9.4.6.2 Output Capacitance Selection
        3. 9.4.6.3 Low-Voltage Tracking
        4. 9.4.6.4 Power Supply Recommendation
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
        1. 10.2.1.1 Normal Mode Application Note
        2. 10.2.1.2 TXD Dominant State Timeout Application Note
        3. 10.2.1.3 Brownout
      2. 10.2.2 Detailed Design Procedures
      3. 10.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Related Links
    3. 13.3 接收文档更新通知
    4. 13.4 支持资源
    5. 13.5 Trademarks
    6. 13.6 Electrostatic Discharge Caution
    7. 13.7 术语表
  14. 14Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Electrical Charateristics

parameters valid over –40℃ ≤ TJ ≤ 150 ℃ range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
RXD OUTPUT TERMINAL (OPEN-DRAIN)
VOL Output low voltage Based upon a 2 kΩ to 10 kΩ external pull-up to VCC 0.2 VCC
IOL Low-level output current, open-drain LIN = 0 V, RXD = 0.4 V 1.5 mA
ILKG Leakage current, high-level LIN = VSUP, RXD = VCC –5 0 5 µA
TXD INPUT TERMINAL
VIL Low-level input voltage –0.3 0.8 V
VIH High-level input voltage 2 5.5 V
IIH High-level input leakage current TXD = high –5 0 5 µA
RTXD Internal pull-up resistor value 125 350 800 kΩ
LIN TERMINAL (REFERENCED TO VSUP)
VOH High-level output voltage(1) LIN recessive, TXD = high, IO = 0 mA, VSUP = 5.5 V to 36 V 0.85 VSUP
VOL Low-level output voltage(1) LIN dominant, TXD = low, VSUP = 5.5 V to 36 V 0.2 VSUP
VIH High-level input voltage(1) LIN recessive, TXD = high, IO = 0 mA, VSUP = 5.5 V to 36 V 0.47 0.6 VSUP
VIL Low-level input voltage(1) LIN dominant, TXD = low, VSUP = 5.5 V to 36 V 0.4 0.53 VSUP
VSUP_NON_OP VSUP where impact of recessive LIN bus < 5% (ISO/DIS 17987 Param 11) TXD & RXD open, VLIN = 5.5 V to 42 V, Bus Load = 60 kΩ + diode and 1.1 kΩ + diode –0.3 42 V
I BUS_LIM Limiting current (ISO/DIS 17987 Param 12) TXD = 0 V, VLIN = 36 V, RMEAS = 440 Ω, VSUP = 36 V,
VBUSdom < 4.518 V;  Figure 8-6
40 90 200 mA
I BUS_PAS_dom Receiver leakage current, dominant (ISO/DIS 17987 Param 13) VLIN = 0 V, VSUP = 12 V Driver off/recessive, RMEAS = 499 Ω;  Figure 8-7 –1 mA
I BUS_PAS_rec1 Receiver leakage current, recessive (ISO/DIS 17987 Param 14) VLIN ≥ VSUP, 5.5 V ≤ VSUP ≤ 36 V Driver off, RMEAS = 1 kΩ;  Figure 8-8 20 µA
I BUS_PAS_rec2 Receiver leakage current, recessive (ISO/DIS 17987 Param 14) VLIN = VSUP, Driver off, RMEAS = 1 kΩ; Figure 8-8 –8 8 µA
I BUS_NO_GND Leakage current, loss of ground (ISO/DIS 17987 Param 15) GND = VSUP, VSUP = 12 V, 0 V ≤ VLIN ≤ 28 V, RMEAS = 1 kΩ;  Figure 8-9 –1 1 mA
IBUS_NO_BAT Leakage current, loss of supply (ISO/DIS 17987 Param 16) 0 V ≤ VLIN ≤ 28 V, VSUP = GND, RMEAS = 10 kΩ; Figure 8-10 8 µA
VBUSdom Low-level input voltage (ISO/DIS 17987 Param 17) LIN dominant (including LIN dominant for wake up);  Figure 8-3Figure 8-4 0.4 VSUP
VBUSrec High-level input voltage (ISO/DIS 17987 Param 18) LIN recessive;  Figure 8-3Figure 8-4 0.6 VSUP
VBUS_CNT Receiver center threshold (ISO/DIS 17987 Param 19) VBUS_CNT = (VIL + VIH)/2; Figure 8-3Figure 8-4 0.475 0.5 0.525 VSUP
VHYS Hysteresis voltage (ISO/DIS 17987 Param 20)(2) VHYS = (VIL - VIH);  Figure 8-3Figure 8-4 0.07 0.175 VSUP
VSERIAL_DIODE Serial diode LIN term pull-up path (ISO/DIS 17987 Param 21) By design and characterization 0.4 0.7 1.0 V
RPU Internal Pull-up resistor to VSUP (ISO/DIS 17987 Param 26) Normal and Standby modes 20 45 60 kΩ
IRSLEEP Pull-up current source to VSUP Sleep mode, VSUP = 12 V, LIN = GND –20 –2 µA
CLINPIN Capacitance of the LIN pin (6) 25 pF
EN INPUT TERMINAL
VIH High-level input voltage 2 5.5 V
VIL Low-level input voltage –0.3 0.8 V
VHYS Hysteresis voltage By design and characterization 30 500 mV
IIL Low-level input current EN = Low –6 0 6 µA
REN Internal pull-down resistor 125 350 800 kΩ
nRST TERMINAL (OPEN DRAIN OUTPUT)
ILKG Leakage current, high-level LIN = VSUP, nRST = VCC –6   6 µA
VOL Low-level output voltage Based upon external pull up to VCC     0.2 VCC
IOL Low-level output current, open-drain LIN = 0 V, nRST = 0.4 V 1.5   mA
DUTY CYCLE CHARACTERISTICS
D1 Duty Cycle 1 (ISO/DIS 17987 Param 27 and J2602 Normal battery)(3)(4) THREC(MAX) = 0.744 x VSUP,
THDOM(MAX) = 0.581 x VSUP,
VSUP = 7 V to 18 V, tBIT = 50/52 µs,
D1 = tBUS_rec(min)/(2 x tBIT) (See Figure 8-11, Figure 8-12)
0.396
D2 Duty Cycle 2 (ISO/DIS 17987 Param 28 and J2602 Normal battery)(3)(4) THREC(MIN) = 0.422 x VSUP,
THDOM(MIN) = 0.284 x VSUP, VSUP = 7.6 V to 18 V,
tBIT = 50/52 µs (20 kbps), D2 = tBUS_rec(MAX)/(2 x tBIT) (See Figure 8-11, Figure 8-12)
0.581
D3 Duty Cycle 3 (ISO/DIS 17987 Param 29 and J2602 Normal battery)(3)(4) THREC(MAX) = 0.778 x VSUP, THDOM(MAX) = 0.616 x VSUP,
VSUP = 7 V to 18 V, tBIT = 96 µs (10.4 kbps),
D3 = tBUS_rec(min)/(2 x tBIT) (See Figure 8-11, Figure 8-12)
0.417
D4 Duty Cycle 4 (ISO/DIS 17987 Param 30 and J2602 Normal battery)(3)(4) THREC(MIN) = 0.389 x VSUP,
THDOM(MIN) = 0.251 x VSUP,
VSUP = 7.6 V to 18 V, tBIT = 96 µs (10.4 kbps),
D4 = tBUS_rec(MAX)/(2 x tBIT) (See Figure 8-11, Figure 8-12)
0.59
D1LB Duty Cycle 1
J2602 Low battery (4)(5)
THREC(MAX) = 0.665 x VSUP, THDOM(MAX) = 0.499 x VSUP, VSUP = 5.5 V to 7 V, tBIT = 50/52 µs, D1LB = tBUS_rec(min)/(2 x tBIT) (See Figure 8-11, Figure 8-12) 0.396
D2LB Duty Cycle 2
J2602 Low battery (4)(5)
T THREC(MIN) = 0.496 x VSUP, THDOM(MIN) = 0.361 x VSUP, VSUP = 6.1 V to 7.6 V, tBIT = 50/52 µs, D2LB = tBUS_rec(MAX)/(2 x tBIT) (See Figure 8-11, Figure 8-12) 0.581
D3LB Duty Cycle 3
J2602 Low battery (4)(5)
THREC(MAX) = 0.665 x VSUP, THDOM(MAX) = 0.499 x VSUP, VSUP = 5.5 V to 7 V, tBIT = 96 µs, D3LB = tBUS_rec(min)/(2 x tBIT) (See Figure 8-11, Figure 8-12) 0.417
D4LB Duty Cycle 4
J2602 Low battery (4)(5)
T THREC(MIN) = 0.496 x VSUP, THDOM(MIN) = 0.361 x VSUP, VSUP = 6.1 V to 7.6 V, tBIT = 96 µs, D4LB = tBUS_rec(MAX)/(2 x tBIT) (See Figure 8-11, Figure 8-12) 0.59
SAE J2602 loads include: commander node: 5.5 nF; 4 kΩ and for a commander node: 5.5 nF; 875 Ω
VHYS is defined for both ISO 17987 and SAE J2602-1.
ISO 17987 loads include 1 nF; 1 kΩ/ 6.8nF; 660 Ω/ 10 nF; 500 Ω; with tBIT values of 50 µs and 96 µs
SAE J2602 loads include: commander node: 5.5 nF; 4 kΩ/ 899 pF; 20 kΩ and for a responder node: 5.5 nF; 875 Ω/ 899 pF; 900 Ω; with tBIT values of 52 µs and 96 µs
ISO 17987 does not have a low battery specification.  Using the ISO 17987 loads these low battery duty cycle parameters are covered for tBIT values of 50 µs and 96 µs
Specified by design