SLAS354C September 2001 – September 2015 TLV2553
PRODUCTION DATA.
MIN | MAX | UNIT | ||
---|---|---|---|---|
VCC | Supply voltage(2) | –0.5 | 6.5 | V |
VI | Input voltage (any input) | –0.3 | VCC + 0.3 | |
VO | Output voltage | –0.3 | VCC + 0.3 | |
Vref+ | Positive reference voltage | –0.3 | VCC + 0.3 | |
Vref– | Negative reference voltage | –0.3 | VCC + 0.3 | |
II | Peak input current (any input) | –20 | 20 | mA |
Peak total input current (all inputs) | –30 | 30 | ||
TJ | Operating virtual junction temperature | –40 | 150 | °C |
TA | Operating free-air temperature | –40 | 85 | |
Tstg | Storage temperature | –65 | 150 |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V |
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±500 |
MIN | NOM | MAX | UNIT | ||||
---|---|---|---|---|---|---|---|
VCC | Supply voltage | 2.7 | 5.5 | V | |||
I/O CLOCK frequency | VCC = 4.5 V to 5.5 V | 16-bit I/O | 0.01 | 15 | MHz | ||
12-bit I/O | 0.01 | 15 | |||||
8-bit I/O | 0.01 | 15 | |||||
VCC = 2.7 V to 3.6 V | 0.01 | 10 | |||||
I/O CLOCK | Tolerable clock jitter | VCC = 4.5 V to 5.5 V | 0.38 | ns | |||
Aperature jitter | VCC = 4.5 V to 5.5 V | 100 | ps | ||||
Analog input voltage(1) | VCC = 4.5 V to 5.5 V | 0 | (REF+ ) – (REF– ) | V | |||
VCC = 3 V to 3.6 V | 0 | (REF+ ) – (REF– ) | |||||
VCC = 2.7 V to 3 V | 0 | (REF+ ) – (REF– ) | |||||
VIH | High-level control input voltage | VCC = 4.5 V to 5.5 V | 2 | V | |||
VCC = 2.7 V to 3.6 V | 2.1 | ||||||
VIL | Low-level control input voltage | VCC = 4.5 V to 5.5 V | 0.8 | V | |||
VCC = 2.7 V to 3.6 V | 0.6 | ||||||
TA | Operating free-air temperature | TLV2553I | –40 | 85 | °C |
THERMAL METRIC(1) | TLV2553 | UNIT | ||
---|---|---|---|---|
DW (SOIC) | PW (TSSOP) | |||
20 PINS | 20 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 66 | 88.1 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 31.4 | 21.6 | °C/W |
RθJB | Junction-to-board thermal resistance | 33.7 | 40.4 | °C/W |
ψJT | Junction-to-top characterization parameter | 7.4 | 0.8 | °C/W |
ψJB | Junction-to-board characterization parameter | 33.3 | 39.7 | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | ||||
---|---|---|---|---|---|---|---|---|---|
VOH | High-level output voltage | VCC = 4.5 V, IOH = –1.6 mA VCC = 2.7 V, IOH = –0.2 mA |
30 pF | 2.4 | V | ||||
VCC = 4.5 V, IOH = –20 μA VCC = 2.7 V, IOH = –20 μA |
VCC – 0.1 | ||||||||
VOL | Low-level output voltage | VCC = 4.5 V, IOL = –1.6 mA VCC = 2.7 V, IOL = –0.8 mA |
30 pF | 0.4 | V | ||||
VCC = 4.5 V, IOL = –20 μA VCC = 2.7 V, IOL = –20 μA |
0.1 | ||||||||
IOZ | High-impedance off-state output current | VO = VCC, CS = VCC | 1 | 2.5 | μA | ||||
VO = 0 V, CS = VCC | –1 | –2.5 | |||||||
ICC | Operating supply current | CS = 0 V, External reference | VCC = 5 V | 1.2 | mA | ||||
VCC = 2.7 V | 0.9 | ||||||||
ICC(PD) | Power-down current | For all digital inputs, 0 ≤ VI ≤ 0.5 V or VI ≥ VCC – 0.5 V, I/O CLOCK = 0 V | Software power down | 0.1 | 1 | μA | |||
Auto power down | 0.1 | 10 | |||||||
IIH | High-level input current | VI = VCC | 0.005 | 2.5 | μA | ||||
IIL | Low-level input current | VI = 0 V | –0.005 | –2.5 | μA | ||||
Ilkg | Selected channel leakage current | Selected channel at VCC , Unselected channel at 0 V |
1 | μA | |||||
Selected channel at 0 V, Unselected channel at VCC |
–1 | ||||||||
fOSC | Internal oscillator frequency | VCC = 4.5 V to 5.5 V | 3.27 | MHz | |||||
VCC = 2.7 V to 3.6 V | 2.56 | ||||||||
tconvert | Conversion time (13.5 × (1/fOSC) + 25 ns) |
VCC = 4.5 V to 5.5 V | 4.15 | μs | |||||
VCC = 2.7 V to 3.6 V | 5.54 | ||||||||
Internal oscillator frequency voltage | 3.6 | 4.1 | V | ||||||
Zi | Input impedance(2) | Analog inputs | VCC = 4.5 V | 500 | Ω | ||||
VCC = 2.7 V | 600 | ||||||||
Ci | Input capacitance | Analog inputs | 45 | 55 | pF | ||||
Control inputs | 5 | 15 |
PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
REF– | Reference input voltage | VCC = 4.5 V to 5.5 V | –0.1 | 0 | 0.1 | V | |
VCC = 2.7 V to 3.6 V | –0.1 | 0 | 0.1 | ||||
REF+ | Reference input voltage | VCC = 4.5 V to 5.5 V | 2 | VCC | V | ||
VCC = 2.7 V to 3.6 V | 2 | VCC | |||||
External reference input voltage difference, (REF+) – (REF–)(2) | VCC = 4.5 V to 5.5 V | 1.9 | VCC | V | |||
VCC = 2.7 V to 3.6 V | 1.9 | VCC | |||||
External reference supply current | CS at 0 V | VCC = 4.5 V to 5.5 V | 0.94 | mA | |||
VCC = 2.7 V to 3.6 V | 0.62 | ||||||
Reference input impedance | VCC = 5 V | Static | 1 | MΩ | |||
During sampling/conversion | 6 | 9 | kΩ | ||||
VCC = 2.7 V | Static | 1 | MΩ | ||||
During sampling/conversion | 6 | 9 | kΩ |
PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | |
---|---|---|---|---|---|---|
INL | Integral linearity error(3) | –1 | 1 | LSB | ||
DNL | Differential linearity error | –1 | 1 | LSB | ||
EO | Offset error(4) | See (2) | –2 | 2 | mV | |
EQ | Gain error(4) | See(2) | –3 | 3 | mV | |
ET | Total unadjusted error(5) | ±15 | LSB | |||
Self-test output code Table 2, (6) | Address data input = 1011 | 2048 | ||||
Address data input = 1100 | 0 | |||||
Address data input = 1101 | 4095 |
MIN | TYP | MAX | UNIT | |||
---|---|---|---|---|---|---|
tw1 | Pulse duration I/O CLOCK high or low | 26.7 | 100000 | ns | ||
tsu1 | Setup time DATA IN valid before I/O CLOCK rising edge (see Figure 32) | 12 | ns | |||
th1 | Hold time DATA IN valid after I/O CLOCK rising edge (see Figure 32) | 0 | ns | |||
tsu2 | Setup time CS low before first rising I/O CLOCK edge(1) (see Figure 33) | 25 | ns | |||
th2 | Hold time CS pulse duration high time (see Figure 33) | 100 | ns | |||
th3 | Hold time CS low after last I/O CLOCK falling edge (see Figure 33) | 0 | ns | |||
th4 | Hold time DATA OUT valid after I/O CLOCK falling edge (see Figure 34) | 2 | ns | |||
th5 | Hold time CS high after EOC rising edge when CS is toggled (see Figure 37) | 0 | ns | |||
td1 | Delay time CS falling edge to DATA OUT valid (MSB or LSB) (see Figure 31) | Load = 25 pF | 28 | ns | ||
Load = 10 pF | 20 | ns | ||||
td2 | Delay time CS rising edge to DATA OUT high impedance (see Figure 31) | 10 | ns | |||
td3 | Delay time I/O CLOCK falling edge to next DATA OUT bit valid (see Figure 34) | 2 | 20 | ns | ||
td4 | Delay time Last I/O CLOCK falling edge to EOC falling edge | 55 | ns | |||
td5 | Delay time last I/O CLOCK falling edge to CS falling edge to abort conversion | 1.5 | µs | |||
tt1 | Transition time I/O CLOCK (1)(see Figure 34) | 1 | µs | |||
tt2 | Transition time DATA OUT (see Figure 34) | 5 | ns | |||
tt3 | Transition time INT/EOC, CL at 7 pF (see Figure 36) | 2.4 | ns | |||
tt4 | Transition time DATA IN, CS | 10 | µs | |||
tcycle | Total cycle time (sample, conversion and delays)(1) | MAX(tconvert) + I/O period (8/12/16 CLKs) | µs | |||
tsample | Channel acquisition time (sample), at 1 kΩ,(1) (See Figure 1 through Figure 6) | Source impedance = 25 Ω | 600 | ns | ||
Source impedance = 100 Ω | 650 | |||||
Source impedance = 500 Ω | 700 | |||||
Source impedance = 1 kΩ | 1000 |
MIN | TYP | MAX | UNIT | |||
---|---|---|---|---|---|---|
tw1 | Pulse duration I/O CLOCK high or low | 40 | 100000 | ns | ||
tsu1 | Setup time DATA IN valid before I/O CLOCK rising edge (see Figure 32) | 22 | ns | |||
th1 | Hold time DATA IN valid after I/O CLOCK rising edge (see Figure 32) | 0 | ns | |||
tsu2 | Setup time CS low before first rising I/O CLOCK edge(1) (see Figure 33) | 33 | ns | |||
th2 | Hold time CS pulse duration high time (see Figure 33) | 100 | ns | |||
th3 | Hold time CS low after last I/O CLOCK falling edge (see Figure 33) | 0 | ns | |||
th4 | Hold time DATA OUT valid after I/O CLOCK falling edge (see Figure 33) | 2 | ns | |||
th5 | Hold time CS high after EOC rising edge when CS is toggled (see Figure 37) | 0 | ns | |||
td1 | Delay time CS falling edge to DATA OUT valid (MSB or LSB) (see Figure 31) | Load = 25 pF | 30 | ns | ||
Load = 10 pF | 22 | ns | ||||
td2 | Delay time CS rising edge to DATA OUT high impedance (see Figure 31) | 10 | ns | |||
td3 | Delay time I/O CLOCK falling edge to next DATA OUT bit valid (see Figure 34) | 2 | 33 | ns | ||
td4 | Delay time Last I/O CLOCK falling edge to EOC falling edge | 75 | ns | |||
td5 | Delay time last I/O CLOCK falling edge to CS falling edge to abort conversion | 1.5 | µs | |||
tt1 | Transition time I/O CLOCK (1)(see Figure 34) | 1 | µs | |||
tt2 | Transition time DATA OUT (see Figure 34) | 5 | ns | |||
tt3 | Transition time INT/EOC, CL at 7 pF (see Figure 36) | 4 | ns | |||
tt4 | Transition time DATA IN, CS | 10 | µs | |||
tcycle | Total cycle time (sample, conversion and delays)(1) | MAX(tconvert) + I/O period (8/12/16 CLKs) | µs | |||
tsample | Channel acquisition time (sample), at 1 kΩ,(1) (See Figure 1 through Figure 6) | Source impedance = 25 Ω | 800 | ns | ||
Source impedance = 100 Ω | 850 | |||||
Source impedance = 500 Ω | 1000 | |||||
Source impedance = 1 kΩ | 1600 |
NOTE:
To minimize errors caused by noise at CS, the internal circuitry waits for a setup time after the CS falling edge before responding to control input signals. Therefore, no attempt should be made to clock in an address until the minimum CS setup time has elapsed.NOTE:
To minimize errors caused by noise at CS, the internal circuitry waits for a setup time after the CS falling edge before responding to control input signals. Therefore, no attempt should be made to clock in an address until the minimum CS setup time has elapsed.NOTE:
To minimize errors caused by noise at CS, the internal circuitry waits for a setup time after the CS falling edge before responding to control input signals. Therefore, no attempt should be made to clock in an address until the minimum CS setup time has elapsed.