SLAS354C September   2001  – September 2015 TLV2553

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  External Reference Specifications
    7. 6.7  Operating Characteristics
    8. 6.8  Timing Requirements: VREF+ = 5 V
    9. 6.9  Timing Requirements: VREF+ = 2.5 V
    10. 6.10 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Analog MUX
      2. 8.3.2 Reference
    4. 8.4 Device Functional Modes
      1. 8.4.1  Converter Operation
      2. 8.4.2  Data I/O Cycle
      3. 8.4.3  Sampling Cycle
      4. 8.4.4  Conversion Cycle
      5. 8.4.5  Power Up and Initialization
        1. 8.4.5.1 Example
      6. 8.4.6  Data Input
      7. 8.4.7  Data Input—Address/Command Bits
      8. 8.4.8  Data Output Length
      9. 8.4.9  LSB Out First
      10. 8.4.10 Bipolar Output Format
      11. 8.4.11 EOC Output
      12. 8.4.12 Chip-Select Input (CS)
      13. 8.4.13 Power-Down Features
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Community Resources
    2. 12.2 Trademarks
    3. 12.3 Electrostatic Discharge Caution
    4. 12.4 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VCC Supply voltage(2) –0.5 6.5 V
VI Input voltage (any input) –0.3 VCC + 0.3
VO Output voltage –0.3 VCC + 0.3
Vref+ Positive reference voltage –0.3 VCC + 0.3
Vref– Negative reference voltage –0.3 VCC + 0.3
II Peak input current (any input) –20 20 mA
Peak total input current (all inputs) –30 30
TJ Operating virtual junction temperature –40 150 °C
TA Operating free-air temperature –40 85
Tstg Storage temperature –65 150
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to the GND terminal with REF– and GND wired together (unless otherwise noted).

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VCC Supply voltage 2.7 5.5 V
I/O CLOCK frequency VCC = 4.5 V to 5.5 V 16-bit I/O 0.01 15 MHz
12-bit I/O 0.01 15
8-bit I/O 0.01 15
VCC = 2.7 V to 3.6 V 0.01 10
I/O CLOCK Tolerable clock jitter VCC = 4.5 V to 5.5 V 0.38 ns
Aperature jitter VCC = 4.5 V to 5.5 V 100 ps
Analog input voltage(1) VCC = 4.5 V to 5.5 V 0 (REF+ ) – (REF– ) V
VCC = 3 V to 3.6 V 0 (REF+ ) – (REF– )
VCC = 2.7 V to 3 V 0 (REF+ ) – (REF– )
VIH High-level control input voltage VCC = 4.5 V to 5.5 V 2 V
VCC = 2.7 V to 3.6 V 2.1
VIL Low-level control input voltage VCC = 4.5 V to 5.5 V 0.8 V
VCC = 2.7 V to 3.6 V 0.6
TA Operating free-air temperature TLV2553I –40 85 °C
(1) Analog input voltages greater than the voltage applied to REF+ convert as all ones (111111111111), while input voltages less than the voltage applied to REF– convert as all zeros (000000000000).

6.4 Thermal Information

THERMAL METRIC(1) TLV2553 UNIT
DW (SOIC) PW (TSSOP)
20 PINS 20 PINS
RθJA Junction-to-ambient thermal resistance 66 88.1 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 31.4 21.6 °C/W
RθJB Junction-to-board thermal resistance 33.7 40.4 °C/W
ψJT Junction-to-top characterization parameter 7.4 0.8 °C/W
ψJB Junction-to-board characterization parameter 33.3 39.7 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over recommended operating free-air temperature range, when VCC = 5 V: VREF+ = 5 V, I/O CLOCK frequency = 15 MHz, when VCC = 2.7 V: VREF+ = 2.5 V, I/O CLOCK frequency = 10 MHz (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
VOH High-level output voltage VCC = 4.5 V, IOH = –1.6 mA
VCC = 2.7 V, IOH = –0.2 mA
30 pF 2.4 V
VCC = 4.5 V, IOH = –20 μA
VCC = 2.7 V, IOH = –20 μA
VCC – 0.1
VOL Low-level output voltage VCC = 4.5 V, IOL = –1.6 mA
VCC = 2.7 V, IOL = –0.8 mA
30 pF 0.4 V
VCC = 4.5 V, IOL = –20 μA
VCC = 2.7 V, IOL = –20 μA
0.1
IOZ High-impedance off-state output current VO = VCC, CS = VCC 1 2.5 μA
VO = 0 V, CS = VCC –1 –2.5
ICC Operating supply current CS = 0 V, External reference VCC = 5 V 1.2 mA
VCC = 2.7 V 0.9
ICC(PD) Power-down current For all digital inputs, 0 ≤ VI ≤ 0.5 V or VI ≥ VCC – 0.5 V, I/O CLOCK = 0 V Software power down 0.1 1 μA
Auto power down 0.1 10
IIH High-level input current VI = VCC 0.005 2.5 μA
IIL Low-level input current VI = 0 V –0.005 –2.5 μA
Ilkg Selected channel leakage current Selected channel at VCC ,
Unselected channel at 0 V
1 μA
Selected channel at 0 V,
Unselected channel at VCC
–1
fOSC Internal oscillator frequency VCC = 4.5 V to 5.5 V 3.27 MHz
VCC = 2.7 V to 3.6 V 2.56
tconvert Conversion time
(13.5 × (1/fOSC) + 25 ns)
VCC = 4.5 V to 5.5 V 4.15 μs
VCC = 2.7 V to 3.6 V 5.54
Internal oscillator frequency voltage 3.6 4.1 V
Zi Input impedance(2) Analog inputs VCC = 4.5 V 500 Ω
VCC = 2.7 V 600
Ci Input capacitance Analog inputs 45 55 pF
Control inputs 5 15
(1) All typical values are at VCC = 5 V, TA = 25°C.
(2) The switch resistance is very nonlinear and varies with input voltage and supply voltage. This is the worst case.

6.6 External Reference Specifications

PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
REF– Reference input voltage VCC = 4.5 V to 5.5 V –0.1 0 0.1 V
VCC = 2.7 V to 3.6 V –0.1 0 0.1
REF+ Reference input voltage VCC = 4.5 V to 5.5 V 2 VCC V
VCC = 2.7 V to 3.6 V 2 VCC
External reference input voltage difference, (REF+) – (REF–)(2) VCC = 4.5 V to 5.5 V 1.9 VCC V
VCC = 2.7 V to 3.6 V 1.9 VCC
External reference supply current CS at 0 V VCC = 4.5 V to 5.5 V 0.94 mA
VCC = 2.7 V to 3.6 V 0.62
Reference input impedance VCC = 5 V Static 1
During sampling/conversion 6 9
VCC = 2.7 V Static 1
During sampling/conversion 6 9
(1) All typical values are at TA = 25°C.
(2) Add a 0.1-µF capacitor between REF+ and REF– pins when external reference is used.

6.7 Operating Characteristics

over recommended operating free-air temperature range, VREF+ = 5 V, I/O CLOCK frequency = 15 MHz when VCC = 5 V, VREF+ = 2.5 V, I/O CLOCK frequency = 10 MHz when VCC = 2.7 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
INL Integral linearity error(3) –1 1 LSB
DNL Differential linearity error –1 1 LSB
EO Offset error(4) See (2) –2 2 mV
EQ Gain error(4) See(2) –3 3 mV
ET Total unadjusted error(5) ±15 LSB
Self-test output code Table 2, (6) Address data input = 1011 2048
Address data input = 1100 0
Address data input = 1101 4095
(1) All typical values are at TA = 25°C.
(2) Analog input voltages greater than the voltage applied to REF+ convert as all ones (111111111111), while input voltages less than the voltage applied to REF– convert as all zeros (000000000000).
(3) Linearity error is the maximum deviation from the best straight line through the A/D transfer characteristics.
(4) Gain error is the difference between the actual midstep value and the nominal midstep value in the transfer diagram at the specified gain point after the offset error has been adjusted to zero. Offset error is the difference between the actual midstep value and the nominal midstep value at the offset point.
(5) Total unadjusted error comprises linearity, zero-scale, and full-scale errors.
(6) Both the input address and the output codes are expressed in positive logic.

6.8 Timing Requirements: VREF+ = 5 V

over recommended operating free-air temperature range, I/O CLOCK frequency = 15 MHz, VCC = 5 V, load = 25 pF (unless otherwise noted)
MIN TYP MAX UNIT
tw1 Pulse duration I/O CLOCK high or low 26.7 100000 ns
tsu1 Setup time DATA IN valid before I/O CLOCK rising edge (see Figure 32) 12 ns
th1 Hold time DATA IN valid after I/O CLOCK rising edge (see Figure 32) 0 ns
tsu2 Setup time CS low before first rising I/O CLOCK edge(1) (see Figure 33) 25 ns
th2 Hold time CS pulse duration high time (see Figure 33) 100 ns
th3 Hold time CS low after last I/O CLOCK falling edge (see Figure 33) 0 ns
th4 Hold time DATA OUT valid after I/O CLOCK falling edge (see Figure 34) 2 ns
th5 Hold time CS high after EOC rising edge when CS is toggled (see Figure 37) 0 ns
td1 Delay time CS falling edge to DATA OUT valid (MSB or LSB) (see Figure 31) Load = 25 pF 28 ns
Load = 10 pF 20 ns
td2 Delay time CS rising edge to DATA OUT high impedance (see Figure 31) 10 ns
td3 Delay time I/O CLOCK falling edge to next DATA OUT bit valid (see Figure 34) 2 20 ns
td4 Delay time Last I/O CLOCK falling edge to EOC falling edge 55 ns
td5 Delay time last I/O CLOCK falling edge to CS falling edge to abort conversion 1.5 µs
tt1 Transition time I/O CLOCK (1)(see Figure 34) 1 µs
tt2 Transition time DATA OUT (see Figure 34) 5 ns
tt3 Transition time INT/EOC, CL at 7 pF (see Figure 36) 2.4 ns
tt4 Transition time DATA IN, CS 10 µs
tcycle Total cycle time (sample, conversion and delays)(1) MAX(tconvert) + I/O period (8/12/16 CLKs) µs
tsample Channel acquisition time (sample), at 1 kΩ,(1) (See Figure 1 through Figure 6) Source impedance = 25 Ω 600 ns
Source impedance = 100 Ω 650
Source impedance = 500 Ω 700
Source impedance = 1 kΩ 1000
(1) I/O CLOCK period = 8X [1/(I/O CLOCK frequency)] or 12X [1/(I/O CLOCK frequency)] or 16X [1/(I/O CLOCK frequency)] depends on I/O format selected.

6.9 Timing Requirements: VREF+ = 2.5 V

over recommended operating free-air temperature range, I/O CLOCK frequency = 10 MHz, VCC = 2.7 V, load = 25 pF (unless otherwise noted)
MIN TYP MAX UNIT
tw1 Pulse duration I/O CLOCK high or low 40 100000 ns
tsu1 Setup time DATA IN valid before I/O CLOCK rising edge (see Figure 32) 22 ns
th1 Hold time DATA IN valid after I/O CLOCK rising edge (see Figure 32) 0 ns
tsu2 Setup time CS low before first rising I/O CLOCK edge(1) (see Figure 33) 33 ns
th2 Hold time CS pulse duration high time (see Figure 33) 100 ns
th3 Hold time CS low after last I/O CLOCK falling edge (see Figure 33) 0 ns
th4 Hold time DATA OUT valid after I/O CLOCK falling edge (see Figure 33) 2 ns
th5 Hold time CS high after EOC rising edge when CS is toggled (see Figure 37) 0 ns
td1 Delay time CS falling edge to DATA OUT valid (MSB or LSB) (see Figure 31) Load = 25 pF 30 ns
Load = 10 pF 22 ns
td2 Delay time CS rising edge to DATA OUT high impedance (see Figure 31) 10 ns
td3 Delay time I/O CLOCK falling edge to next DATA OUT bit valid (see Figure 34) 2 33 ns
td4 Delay time Last I/O CLOCK falling edge to EOC falling edge 75 ns
td5 Delay time last I/O CLOCK falling edge to CS falling edge to abort conversion 1.5 µs
tt1 Transition time I/O CLOCK (1)(see Figure 34) 1 µs
tt2 Transition time DATA OUT (see Figure 34) 5 ns
tt3 Transition time INT/EOC, CL at 7 pF (see Figure 36) 4 ns
tt4 Transition time DATA IN, CS 10 µs
tcycle Total cycle time (sample, conversion and delays)(1) MAX(tconvert) + I/O period (8/12/16 CLKs) µs
tsample Channel acquisition time (sample), at 1 kΩ,(1) (See Figure 1 through Figure 6) Source impedance = 25 Ω 800 ns
Source impedance = 100 Ω 850
Source impedance = 500 Ω 1000
Source impedance = 1 kΩ 1600
(1) I/O CLOCK period = 8X [1/(I/O CLOCK frequency)] or 12X [1/(I/O CLOCK frequency)] or 16X [1/(I/O CLOCK frequency)] depends on I/O format selected.
TLV2553 t_12tx_w_cs_las579.gif Figure 1. Timing for 12-Clock Transfer Using CS With DATA OUT Set for MSB First
TLV2553 t_12tx_wo_cs_las579.gif

NOTE:

To minimize errors caused by noise at CS, the internal circuitry waits for a setup time after the CS falling edge before responding to control input signals. Therefore, no attempt should be made to clock in an address until the minimum CS setup time has elapsed.
Figure 2. Timing for 12-Clock Transfer Not Using CS With DATA OUT Set for MSB First
TLV2553 t_8tx_w_cs_las579.gif Figure 3. Timing for 8-Clock Transfer Using CS With DATA OUT Set for MSB First
TLV2553 t_8tx_wo_cs_las579.gif

NOTE:

To minimize errors caused by noise at CS, the internal circuitry waits for a setup time after the CS falling edge before responding to control input signals. Therefore, no attempt should be made to clock in an address until the minimum CS setup time has elapsed.
Figure 4. Timing for 8-Clock Transfer Not Using CS With DATA OUT Set for MSB First
TLV2553 t_16tx_w_cs_las579.gif Figure 5. Timing for 16-Clock Transfer Using CS With DATA OUT Set for MSB First
TLV2553 t_16tx_wo_cs_las579.gif

NOTE:

To minimize errors caused by noise at CS, the internal circuitry waits for a setup time after the CS falling edge before responding to control input signals. Therefore, no attempt should be made to clock in an address until the minimum CS setup time has elapsed.
Figure 6. Timing for 16-Clock Transfer Not Using CS With DATA OUT Set for MSB First

6.10 Typical Characteristics

TLV2553 tc_01_slas354.gif
Figure 7. Supply Current
vs Free-Air Temperature
TLV2553 tc_03_slas354.gif
Figure 9. Software Power Down vs Free-air Temperature
TLV2553 tc_05_slas354.gif
Figure 11. Maximum Differential Nonlinearity
vs Free-air Temperature
TLV2553 tc_07_slas354.gif
Figure 13. Maximum Integral Nonlinearity
vs Free-air Temperature
TLV2553 tc_02_slas354.gif
Figure 8. External Reference Current
vs Free-air Temperature
TLV2553 tc_04_slas354.gif
Figure 10. Auto Power Down vs Free-air Temperature
TLV2553 tc_06_slas354.gif
Figure 12. Minimum Differential Nonlinearity
vs Free-air Temperature
TLV2553 tc_08_slas354.gif
Figure 14. Minimum Integral Nonlinearity
vs Free-air Temperature
TLV2553 tc_09_slas354.gif Figure 15. Differential Nonlinearity vs Digital Output Code
TLV2553 tc_10_slas354.gif Figure 16. Integral Nonlinearity vs Digital Output Code
TLV2553 tc_11_slas354.gif
Figure 17. Offset Error vs Free-air Temperature
TLV2553 tc_13_slas354.gif
Figure 19. Supply Current
vs Free-air Temperature
TLV2553 tc_15_slas354.gif
Figure 21. Software Power Down vs Free-air Temperature
TLV2553 tc_17_slas354.gif
Figure 23. Maximum Differential Nonlinearity
vs Free-air Temperature
TLV2553 tc_19_slas354.gif
Figure 25. Maximum Integral Nonlinearity
vs Free-air Temperature
TLV2553 tc_12_slas354.gif
Figure 18. Gain Error vs Free-air Temperature
TLV2553 tc_14_slas354.gif
Figure 20. External Reference Current
vs Free-air Temperature
TLV2553 tc_16_slas354.gif
Figure 22. Auto Power Down vs Free-air Temperature
TLV2553 tc_18_slas354.gif
Figure 24. Minimum Differential Nonlinearity
vs Free-air Temperature
TLV2553 tc_20_slas354.gif
Figure 26. Minimum Integral Nonlinearity
vs Free-air Temperature
TLV2553 tc_21_slas354.gif
Figure 27. Differential Nonlinearity vs Digital Output Code
TLV2553 tc_22_slas354.gif
Figure 28. Integral Nonlinearity vs Digital Output Code
TLV2553 tc_23_slas354.gif
Figure 29. Offset Error vs Free-air Temperature
TLV2553 tc_24_slas354.gif
Figure 30. Gain Error vs Free-air Temperature