ZHCSH12A October   2017  – December 2018 TLV2313-Q1 , TLV313-Q1

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     EMIRR IN+ 与频率间的关系
  4. 修订历史记录
  5. 器件比较表
  6. 引脚配置和功能
    1.     引脚功能:TLV313-Q1
    2.     引脚功能:TLV2313-Q1
  7. 规格
    1. 7.1 绝对最大额定值
    2. 7.2 ESD 额定值
    3. 7.3 建议运行条件
    4. 7.4 热性能信息:TLV313-Q1
    5. 7.5 热性能信息:TLV2313-Q1
    6. 7.6 电气特性:5.5V
    7. 7.7 电气特性:1.8V
    8. 7.8 典型特性:图形列表
    9. 7.9 典型特性
  8. 详细 说明
    1. 8.1 概要
    2. 8.2 功能框图
    3. 8.3 特性 说明
      1. 8.3.1 工作电压
      2. 8.3.2 轨至轨输入
      3. 8.3.3 轨至轨输出
      4. 8.3.4 共模抑制比 (CMRR)
      5. 8.3.5 容性负载和稳定性
      6. 8.3.6 EMI 敏感性和输入滤波
      7. 8.3.7 输入和 ESD 保护
    4. 8.4 器件功能模式
  9. 应用和实现
    1. 9.1 应用信息
    2. 9.2 典型应用
      1. 9.2.1 设计要求
      2. 9.2.2 详细设计流程
      3. 9.2.3 应用曲线
    3. 9.3 系统示例
  10. 10电源建议
  11. 11布局
    1. 11.1 布局指南
    2. 11.2 布局示例:单通道
    3. 11.3 布局示例:双通道
  12. 12器件和文档支持
    1. 12.1 文档支持
      1. 12.1.1 相关文档
    2. 12.2 相关链接
    3. 12.3 接收文档更新通知
    4. 12.4 社区资源
    5. 12.5 商标
    6. 12.6 静电放电警告
    7. 12.7 术语表
  13. 13机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

容性负载和稳定性

TLVx313-Q1 系列器件旨在用于 需要驱动 容性负载的应用。与所有运算放大器一样,在某些特定情况下,TLVx313-Q1 器件可能会变得不稳定。当确定放大器是否在运行中保持稳定时,需要考虑特定运算放大器电路配置、布局布线、增益和输出负载等因素。相对于运行在较高噪声增益上的放大器,一个用单位增益 (+1V/V) 配置来驱动电容负载的的运算放大器不稳定的可能性更大。与运算放大器输出电阻结合在一起的电容负载在反馈环路内生成一个使相位裕量降级的极点。相位裕量的减小随着负载电容的增加而增加。在单位增益配置下运行时,TLVx313-Q1 器件在纯容性负载达到大约 1nF 时仍然保持稳定。某些电容器(CL 大于 1µF)的等效串联电阻 (ESR) 足以改变反馈环路内的相位特性,从而使放大器保持稳定。增加放大器闭环增益使得放大器能够驱动更大的电容。当在更高电压增益上观察放大器的过冲响应时,这个增加的驱动能力会十分明显。

当放大器在单位增益配置下运行时,增大其电容负载驱动能力的一种方法就是插入一个小电阻器(一般为 10Ω 到 20Ω),使其与输出串联(如 Figure 19 中所示)。这个电阻器将大大减少与大电容负载相关的过冲和振铃。但这个方法可能会带来一个问题,即增加的串联电阻和任一与容性负载并联的电阻会生成一个分压器。此分压器在输出上引入一个减少输出摆幅的增益误差。

TLV313-Q1 TLV2313-Q1 ai_imprv_cap_load_drv_bos563.gifFigure 19. 改进容性负载驱动