SLCS135B August   2000  – January 2017 TLV3401 , TLV3402 , TLV3404

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information: TLV3401
    5. 7.5 Thermal Information: TLV3402
    6. 7.6 Thermal Information: TLV3404
    7. 7.7 Electrical Characteristics
    8. 7.8 Switching Characteristics
    9. 7.9 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Operating Voltage
      2. 8.3.2 Setting the Threshold
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
        1. 12.1.1.1 DIP Adapter EVM
        2. 12.1.1.2 Universal Op Amp EVM
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Related Links
    4. 12.4 Receiving Notification of Documentation Updates
    5. 12.5 Community Resource
    6. 12.6 Trademarks
    7. 12.7 Electrostatic Discharge Caution
    8. 12.8 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Voltage Supply, VCC(2) 17 V
Differential input, VID –20 20
Input, VI(2)(3) 0 VCC + 5
Current Input, II –10 10 mA
Output, IO –10 10
Temperature Operating, TA C-suffix versions 0 70 °C
I-suffix versions –40 125
Junction, TJ 150
Storage, Tstg –65 150
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values, except differential voltages, are with respect to GND.
Input voltage range is limited to 20 V or VCC + 5 V, whichever is smaller.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1500
Machine model (MM) ±100
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

MIN MAX UNIT
Supply voltage, VCC Single supply C-suffix versions 2.5 16 V
I-suffix versions 2.7 16
Split supply C-suffix versions ±1.25 ±8
I-suffix versions ±1.35 ±8
Common-mode input voltage, VICR –0.1 VCC + 5 V
Operating free-air temperature, TA C-suffix versions 0 70 °C
I-suffix versions –40 125

Thermal Information: TLV3401

THERMAL METRIC(1) TLV3401 UNIT
D (SOIC) DBV (SOT-23) P (PDIP)
8 PINS 5 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 201.9 237.8 58.5 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 92.5 108.7 48.3 °C/W
RθJB Junction-to-board thermal resistance 123.3 64.1 35.6 °C/W
ψJT Junction-to-top characterization parameter 23 12.1 25.9 °C/W
ψJB Junction-to-board characterization parameter 212.6 63.3 35.5 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W

Thermal Information: TLV3402

THERMAL METRIC(1) TLV3402 UNIT
D (SOIC) DGK (VSSOP) P (PDIP)
8 PINS 8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 201.9 186.8 58.5 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 92.5 77.5 48.3 °C/W
RθJB Junction-to-board thermal resistance 123.3 107.8 35.6 °C/W
ψJT Junction-to-top characterization parameter 23 15.7 25.9 °C/W
ψJB Junction-to-board characterization parameter 212.6 106.2 35.5 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
For more information about traditional and new thermal metrics, see the application report, Semiconductor and IC Package Thermal Metrics

Thermal Information: TLV3404

THERMAL METRIC(1) TLV3404 UNIT
D (SOIC) N (PDIP) PW (TSSOP)
14 PINS 14 PINS 14 PINS
RθJA Junction-to-ambient thermal resistance 83.8 65.5 120.8 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 70.7 20.0 34.3 °C/W
RθJB Junction-to-board thermal resistance 59.5 25.9 62.8 °C/W
ψJT Junction-to-top characterization parameter 11.6 1.9 1 °C/W
ψJB Junction-to-board characterization parameter 37.7 25.3 56.5 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W

Electrical Characteristics

At specified free-air temperature and VCC = 2.7 V, 5 V, 15 V, unless otherwise noted.
PARAMETER TEST CONDITIONS TA(1) MIN TYP MAX UNIT
DC PERFORMANCE
VIO Input offset voltage VIC = VCC/2, RS = 50 Ω, RP = 1 MΩ TA = 25°C 250 3600 µV
Full range 4400
αVIO Offset voltage drift VIC = VCC/2, RS = 50 Ω, RP = 1 MΩ TA = 25°C 3 µV/°C
CMRR Common-mode rejection ratio VIC = 0 V to 2.7 V, RS = 50 Ω TA = 25°C 55 72 dB
Full range 50
VIC = 0 V to 5 V, RS = 50 Ω TA = 25°C 60 76
Full range 55
VIC = 0 V to 15 V, RS = 50 Ω TA = 25°C 65 88
Full range 60
AVD Large-signal differential voltage amplification RP = 1 MΩ TA = 25°C 1000 V/mV
INPUT/OUTPUT CHARACTERISTICS
IIO Input offset current VIC = VCC/2, RS = 50 Ω, RP = 1 MΩ TA = 25°C 20 100 pA
Full range 1000
IIB Input bias current VIC = VCC/2, RS = 50 Ω, RP = 1 MΩ TA = 25°C 80 250 pA
Full range 1500
ri(d) Differential input resistance TA = 25°C 300
IOZ High-impedance output leakage current VIC = VCC/2, VO = VCC, VID = 1 V TA = 25°C 50 pA
VOL Low-level output voltage VIC = VCC/2, IOL = 2 µA, VID = –1 V TA = 25°C 8 mV
VIC = VCC/2, IOL = 50 µA, VID = –1 V TA = 25°C 80 200
Full range 300
POWER SUPPLY
ICC Supply current (per channel) RP = no pullup Output state low TA = 25°C 470 550 nA
Full range 750
Output state high TA = 25°C 560 640
Full range 950
PSRR Power-supply rejection ratio VIC = VCC/2, no load VCC = 2.7 V to
5 V
TA = 25°C 75 100 dB
Full range 70
VCC = 5 V to 15 V TA = 25°C 85 105
Full range 80
Full range is 0°C to 70°C for the C-suffix and –40°C to 125°C for the I-suffix. If not specified, full range is –40°C to 125°C.

Switching Characteristics

At TA = 25°C, recommended operating conditions, and VCC = 2.7 V, 5 V, 15 V, unless otherwise noted.
PARAMETER TEST CONDITIONS TA MIN TYP MAX UNIT
t(PLH) Propagation delay time, low-to-high-level output f = 10 kHz, VSTEP = 1 V,
RP = 1 MΩ, CL = 10 pF
Overdrive = 2 mV TA = 25°C 175 µs
Overdrive = 10 mV TA = 25°C 80
Overdrive = 50 mV TA = 25°C 55
t(PHL) Propagation delay time, high-to-low-level output f = 10 kHz, VSTEP = 1 V,
RP = 1 MΩ, CL = 10 pF
Overdrive = 2 mV TA = 25°C 300 µs
Overdrive = 10 mV TA = 25°C 60
Overdrive = 50 mV TA = 25°C 30
tF Fall time RP = 1 MΩ, CL = 10 pF TA = 25°C 5 µs

Typical Characteristics

Table 1. Table of Graphs

DESCRIPTION FIGURE NO.
Input bias/offset current vs Free-air temperature Figure 1
Open collector leakage current vs Free-air temperature Figure 2
VOL Low-level output voltage vs Low-level output current Figure 3, Figure 4, Figure 5
IDD Supply current vs Supply voltage Figure 6
IDD Supply current vs Free-air temperature Figure 7
Low-to-high level output response for various input overdrives Figure 8, Figure 9, Figure 10
High-to-low level output response for various input overdrives Figure 11, Figure 12, Figure 13
Output fall time vs Supply voltage Figure 14
TLV3401 TLV3402 TLV3404 tc_ib_io-tmp_lcs135.gif
Figure 1. Input Bias/Offset Current vs
Free-Air Temperature
TLV3401 TLV3402 TLV3404 tc_vo_low-io_low_27v_lcs135.gif
Figure 3. Low-Level Output Voltage vs
Low-Level Output Current
TLV3401 TLV3402 TLV3404 tc_curr-tmp_lcs135.gif
Figure 2. Open-Collector Leakage Current vs
Free-Air Temperature
TLV3401 TLV3402 TLV3404 tc_vo_low-io_low_5v_lcs135.gif
Figure 4. Low-Level Output Voltage vs
Low-Level Output Current
TLV3401 TLV3402 TLV3404 tc_vo_low-io_low_15v_lcs135.gif
Figure 5. Low-Level Output Voltage vs
Low-Level Output Current
TLV3401 TLV3402 TLV3404 tc_icc-tmp_lcs135.gif
Figure 7. Supply Current vs Free-Air Temperature
TLV3401 TLV3402 TLV3404 tc_lo2hi_odrive_5v_lcs135.gif
Figure 9. Low-to-High Level Output Response
for Various Input Overdrives
TLV3401 TLV3402 TLV3404 tc_hi2lo_odrive_27v_lcs135.gif
Figure 11. High-to-Low Level Output Response
for Various Input Overdrives
TLV3401 TLV3402 TLV3404 tc_hi2lo_odrive_15v_lcs135.gif
Figure 13. High-to-Low Level Output Response
for Various Input Overdrives
TLV3401 TLV3402 TLV3404 tc_curr-vs_lcs135.gif
Figure 6. Supply Current vs Supply Voltage
TLV3401 TLV3402 TLV3404 tc_lo2hi_odrive_27v_lcs135.gif
Figure 8. Low-to-High Level Output Response
for Various Input Overdrives
TLV3401 TLV3402 TLV3404 tc_lo2hi_odrive_15v_lcs135.gif
Figure 10. Low-to-High Level Output Response
for Various Input Overdrives
TLV3401 TLV3402 TLV3404 tc_hi2lo_odrive_5v_lcs135.gif
Figure 12. High-to-Low Level Output Response
for Various Input Overdrives
TLV3401 TLV3402 TLV3404 tc_fall_t-vs_lcs135.gif
Figure 14. Output Fall Time vs Supply Voltage