SLCS137D November   2000  – May 2017 TLV3701 , TLV3702 , TLV3704

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Tables
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Recommended Operating Conditions
    3. 7.3 Thermal Information - TLV3701
    4. 7.4 Thermal Information - TLV3702
    5. 7.5 Thermal Information - TLV3704
    6. 7.6 Electrical Characteristics
    7. 7.7 Switching Characteristics
    8. 7.8 Dissipation Ratings
    9. 7.9 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Operating Voltage
      2. 8.3.2 Setting the Threshold
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
        1. 12.1.1.1 DIP Adapter EVM
        2. 12.1.1.2 Universal Op Amp EVM
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Related Links
    4. 12.4 Receiving Notification of Documentation Updates
    5. 12.5 Community Resources
    6. 12.6 Trademarks
    7. 12.7 Electrostatic Discharge Caution
    8. 12.8 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage, VCC(2) 17 V
Differential input voltage, VID ±20 V
Input voltage, VI(2)(3) 0 VCC + 5 V
Input current, II ±10 mA
Output current, IO ±10 mA
Continuous total power dissipation See Dissipation Ratings
Maximum junction temperature, TJ 150 °C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260 °C
Storage temperature, Tstg –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values, except differential voltages, are with respect to GND.
Input voltage range is limited to 20 V maximum or VCC + 5 V, whichever is smaller.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Supply voltage, VCC Single supply C-suffix 2.5 16 V
I-suffix 2.7 16
Split supply C-suffix ±1.25 ±8
I-suffix ±1.35 ±8
Common-mode input voltage, VICR –0.1 VCC + 5 V
Operating free-air temperature, TA C-suffix 0 70 °C
I-suffix –40 125

Thermal Information – TLV3701

THERMAL METRIC(1) TLV3701 UNIT
DBV (SOT-23) D (SOIC) P (PDIP)
5 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 193.6 124.8 82.8 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 102.4 69.1 84.8 °C/W
RθJB Junction-to-board thermal resistance 54.3 67.9 59.7 °C/W
ψJT Junction-to-top characterization parameter 16.9 22.3 45.3 °C/W
ψJB Junction-to-board characterization parameter 53.6 67.2 59.5 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Thermal Information – TLV3702

THERMAL METRIC(1) TLV3702 UNIT
D (SOIC) DGK (VSSOP) P (PDIP)
8 PINS
RθJA Junction-to-ambient thermal resistance 116.7 163.9 77.1 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 59.4 65.7 79 °C/W
RθJB Junction-to-board thermal resistance 60.2 85.3 54 °C/W
ψJT Junction-to-top characterization parameter 14.6 9 39.5 °C/W
ψJB Junction-to-board characterization parameter 59.5 83.9 53.7 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Thermal Information – TLV3704

THERMAL METRIC(1) TLV3704 UNIT
D (SOIC) N (PDIP) PW (TSSOP)
14 PINS
RθJA Junction-to-ambient thermal resistance 81.4 58.1 105.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 38.1 50.9 33.9 °C/W
RθJB Junction-to-board thermal resistance 37.8 38 49.5 °C/W
ψJT Junction-to-top characterization parameter 7.5 23.6 2.5 °C/W
ψJB Junction-to-board characterization parameter 37.4 37.7 48.8 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

At specified operating free-air temperature range, VCC = 2.7 V, 5 V, 15 V (unless otherwise noted).
PARAMETER TEST CONDITIONS TA(1) MIN TYP MAX UNIT
DC PERFORMANCE
VIO Input offset voltage VIC = VCC/2, RS = 50 Ω 25°C 250 5000 µV
Full range 7000
αVIO Offset voltage drift VIC = VCC/2, RS = 50 Ω 25°C 3 µV/°C
CMRR Common-mode rejection ratio VIC = 0 to 2.7 V, RS = 50 Ω 25°C 55 72 dB
Full range 50
VIC = 0 to 5 V, RS = 50 Ω 25°C 60 76
Full range 55
VIC = 0 to 15 V, RS = 50 Ω 25°C 65 88
Full range 60
AVD Large-signal differential voltage amplification 25°C 1000 V/mV
INPUT/OUTPUT CHARACTERISTICS
IIO Input offset current VIC = VCC/2, RS = 50 Ω 25°C 20 100 pA
Full range 1000
IIB Input bias current VIC = VCC/2, RS = 50 Ω 25°C 80 250 pA
Full range 1500
ri(d) Differential input resistance 25°C 300
VOH High-level output voltage VIC = VCC/2, IOH = 2 μA, VID = 1 V 25°C VCC – 80 mV
VIC = VCC/2, IOH = – 50 μA, VID = 1 V 25°C VCC – 320
Full range VCC – 450
VOL Low-level output voltage VIC = VCC/2, IOH = 2 μA, VID = – 1 V 25°C 8 mV
VIC = VCC/2, IOH = 50 μA, VID = – 1 V 25°C 80 200
Full range 300
POWER SUPPLY
ICC Supply current (per channel) Output state high 25°C 560 800 nA
Full range 1000
PSRR Power supply rejection ratio VIC = VCC/2 V, No load VCC = 2.7 V to 5 V 25°C 75 100 dB
Full range 70
VCC = 5 V to 15 V 25°C 85 105
Full range 80
Full range is 0°C to 70°C for C suffix and –40°C to 125°C for I suffix. If not specified, full range is –40°C to 125°C.

Switching Characteristics

At specified operating free-air temperature range, VCC = 2.7 V, 5 V, 15 V (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
t(PLH) Propagation response time, low-to-high-level output(1) f = 10 kHz, VSTEP = 100 mV, CL = 10 pF, VCC = 2.7 V Overdrive = 2 mV 240 µs
Overdrive = 10 mV 64
Overdrive = 50 mV 36
t(PHL) Propagation response time, high-to-low-level output(1) f = 10 kHz, VSTEP = 100 mV, CL = 10 pF, VCC = 2.7 V Overdrive = 2 mV 167 µs
Overdrive = 10 mV 67
Overdrive = 50 mV 37
tr Rise time CL = 10 pF, VCC = 2.7 V 7 µs
tf Fall time CL = 10 pF, VCC = 2.7 V 9 µs
tsu Start-up time (TLV3701 Only) VCC = 2.7 to 15V(2) 25°C 7 15 ms
Full range 14 30
The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V. Propagation responses are longer at higher supply voltages, refer to Figures 12 – 17 for further details.
The definition of start-up time is the time period between the supply voltage reaching minimum supply (VCCmin) and the device IQ activating (ICCmin) with a valid device output voltage. Single device only.

Dissipation Ratings

PACKAGE θJC (°C/W) θJA (°C/W) TA ≤ 25°C POWER RATING TA = 125°C POWER RATING
D (8) 69.1 124.8 1001 mW 200 mW
D (14) 38.1 81.4 1536 mW 307 mW
DBV (5) 102.4 193.6 646 mW 129 mW
DGK (8) 65.7 163.9 763 mW 153 mW
N (14) 50.9 58.1 2151 mW 430 mW
P (8) 84.8 82.8 1510 mW 302 mW
PW (14) 33.9 105.7 1183 mW 237 mW

Typical Characteristics

At specified operating conditions (unless otherwise noted).

Table 5. Table of Graphs

FIGURE
Input bias/offset current vs Free-air temperature Figure 2
VOL Low-level output voltage vs Low-level output current Figure 6, Figure 8, Figure 4
VOH High-level output voltage vs High-level output current Figure 3, Figure 5, Figure 7
ICC Supply current vs Supply voltage Figure 1
Free-air temperature Figure 9
Output fall time/rise time vs Supply voltage Figure 10
Low-to-high level output response for various input overdrives Figure 11, Figure 13, Figure 15
High-to-low level output response for various input overdrives Figure 12, Figure 14, Figure 16
TLV3701 TLV3702 TLV3704 slcs137c_supply_current_vs_supply_voltage2.gif Figure 1. Supply Current vs Supply Voltage
TLV3701 TLV3702 TLV3704 slcs137c_high_level_output_voltage_vs_high_level_output_current.gif Figure 3. High-Level Output Voltage vs High-Level Output Current
TLV3701 TLV3702 TLV3704 slcs137c_high_level_output_voltage_vs_high_level_output_current2.gif Figure 5. High-Level Output Voltage vs High-Level Output Current
TLV3701 TLV3702 TLV3704 slcs137c_high_level_output_voltage_vs_high_level_output_current3.gif Figure 7. High-Level Output Voltage vs High-Level Output Current
TLV3701 TLV3702 TLV3704 slcs137c_supply_current_vs_free_air_temperature.gif Figure 9. Supply Current vs Free-Air Temperature
TLV3701 TLV3702 TLV3704 slcs137c_low_to_high_output_response_for_various_input_overdrives.gif Figure 11. Low-to-High Output Response for Various Input Overdrives
TLV3701 TLV3702 TLV3704 slcs137c_low_to_high_output_response_for_various_input_overdrives3.gif Figure 13. Low-to-High Level Output Response for Various Input Overdrives
TLV3701 TLV3702 TLV3704 slcs137c_high_to_low_output_response_for_various_input_overdrives2.gif Figure 15. Low-to-High Level Output Response for Various Input Overdrives
TLV3701 TLV3702 TLV3704 slcs137c_input_bias_offset_current_vs_free_air_temperature.gif Figure 2. Input Bias/Offset Current vs Free-Air Temperature
TLV3701 TLV3702 TLV3704 slcs137c_low_level_output_voltage_vs_low_level_output_voltage.gif Figure 4. Low-Level Output Voltage vs Low-Level Output Current
TLV3701 TLV3702 TLV3704 slcs137c_low_level_output_voltage_vs_low_level_output_current.gif Figure 6. Low-Level Output Voltage vs Low-Level Output Current
TLV3701 TLV3702 TLV3704 slcs137c_low_level_output_voltage_vs_low_level_output_current2.gif Figure 8. Low-Level Output Voltage vs Low-Level Output Current
TLV3701 TLV3702 TLV3704 slcs137c_output_rise_fall_time_vs_supply_voltage.gif Figure 10. Output Rise/Fall Time vs Supply Voltage
TLV3701 TLV3702 TLV3704 slcs137c_low_to_high_output_response_for_various_input_overdrives2.gif Figure 12. High-to-Low Level Output Response for Various Input Overdrives
TLV3701 TLV3702 TLV3704 slcs137c_high_to_low_output_response_for_various_input_overdrives.gif Figure 14. High-to-Low Level Output Response for Various Input Overdrives
TLV3701 TLV3702 TLV3704 slcs137c_high_to_low_output_response_for_various_input_overdrives3.gif Figure 16. High-to-Low Level Output Response for Various Input Overdrives