ZHCSEE6 December   2015 TLV2333 , TLV333 , TLV4333

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. 器件比较表
  6. 引脚配置和功能
  7. 技术规格
    1. 7.1 绝对最大额定值
    2. 7.2 ESD 额定值
    3. 7.3 建议的工作条件
    4. 7.4 热性能信息:TLV333
    5. 7.5 热性能信息:TLV2333
    6. 7.6 热性能信息:TLV4333
    7. 7.7 电气特性:VS = 1.8V 至 5.5V
    8. 7.8 典型特性
  8. 详细 说明
    1. 8.1 概述
    2. 8.2 功能框图
    3. 8.3 特性 说明
      1. 8.3.1 工作电压
      2. 8.3.2 输入电压
      3. 8.3.3 内部失调校正
      4. 8.3.4 实现到运算放大器负轨的输出摆幅
      5. 8.3.5 输入差分电压
      6. 8.3.6 EMI 敏感性和输入滤波
    4. 8.4 器件功能模式
  9. 应用和实现
    1. 9.1 系统示例
  10. 10电源相关建议
  11. 11布局
    1. 11.1 布局准则
      1. 11.1.1 通用布局准则
    2. 11.2 布局示例
  12. 12器件和文档支持
    1. 12.1 器件支持
      1. 12.1.1 开发支持
    2. 12.2 文档支持
      1. 12.2.1 相关文档
    3. 12.3 相关链接
    4. 12.4 社区资源
    5. 12.5 商标
    6. 12.6 静电放电警告
    7. 12.7 Glossary
  13. 13机械、封装和可订购信息

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • D|14
  • PW|14
散热焊盘机械数据 (封装 | 引脚)
订购信息

布局

布局准则

通用布局准则

强烈建议您采用优秀的布局规范。尽量缩短走线;如果可以,在使用印刷电路板 (PCB) 接地平面时,请将表面贴装式组件放置在尽可能靠近器件引脚的位置。将 0.1μF 电容器放置在尽可能靠近电源引脚的位置。在整个模拟电路中贯彻应用这些准则可提高性能并实现各种优势,如降低电磁干扰 (EMI) 敏感性。

如要获得最低的失调电压和精度性能,必须优化电路布局和机械条件。避免在因连接不均质导体形成的热电偶结中产生热电(塞贝克)效应的温度梯度。通过确保两个输入端子的电势等效,可以消除这些热电产生的电势。其他布局和设计注意事项包括:

  • 使用低热电系数条件(避免异种金属)。
  • 将组件与电源或其他热源进行热隔离。
  • 将运算放大器和输入电路与气流(如冷却风扇气流)隔离。

遵循这些准则会降低在不同温度下产生结的可能性,从而达到 0.1μV/°C 或更高的热电电压,具体取决于所使用的材料。

布局示例

TLV333 TLV2333 TLV4333 layout_example_bos620.gif Figure 24. 布局示例