ZHCSIE1A May   2018  – June 2018 TLV7081

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      欠压检测
      2.      IS 与 电源电压间的关系
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Timing Diagrams
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
      1. 7.4.1 Inputs
      2. 7.4.2 Internal Hysteresis
      3. 7.4.3 Output
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Nano-Power Battery Monitor
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
      2. 8.2.2 Battery Monitoring in Portable Electronics
  9. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  10. 10器件和文档支持
    1. 10.1 文档支持
      1. 10.1.1 相关文档
    2. 10.2 接收文档更新通知
    3. 10.3 社区资源
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 术语表
  11. 11机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Inputs

The TLV7081 input extends from V- to 5.6 V which is independent of supply. The input IN can be any voltage within these limits and no phase inversion of the comparator output occurs.

The input of TLV7081 is fault tolerant. It maintains the same high input impedance when V+ is unpowered or ramping up. The input can be safely driven up to the specified maximum voltage (5.6 V) with V+ = 0 V or any value up to the maximum specified.

The input bias current is typically 3 pA for input IN voltages between 0 and 5.6 V. The comparator inputs are protected from undervoltage by internal diodes connected to V-. As the input voltage goes under V-, the protection diodes become forward biased and begin to conduct causing the input bias current to increase exponentially. Input bias current typically doubles for every 10°C temperature increase.