ZHCSGC0K March   2017  – July 2024 TLV9061 , TLV9062 , TLV9064

PRODMIX  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5.   器件比较表
  6. 引脚配置和功能
  7. 规格
    1. 5.1  绝对最大额定值
    2. 5.2  ESD 等级
    3. 5.3  建议运行条件
    4. 5.4  热性能信息:TLV9061
    5. 5.5  热性能信息:TLV9061S
    6. 5.6  热性能信息:TLV9062
    7. 5.7  热性能信息:TLV9062S
    8. 5.8  热性能信息:TLV9064
    9. 5.9  热性能信息:TLV9064S
    10. 5.10 电气特性
    11. 5.11 典型特性
  8. 详细说明
    1. 6.1 概述
    2. 6.2 功能方框图
    3. 6.3 特性说明
      1. 6.3.1 轨到轨输入
      2. 6.3.2 轨到轨输出
      3. 6.3.3 EMI 抑制
      4. 6.3.4 过载恢复
      5. 6.3.5 关断功能
    4. 6.4 器件功能模式
  9. 应用和实施
    1. 7.1 应用信息
    2. 7.2 典型应用
      1. 7.2.1 典型的低侧电流检测应用
      2. 7.2.2 设计要求
      3. 7.2.3 详细设计过程
      4. 7.2.4 应用曲线
    3. 7.3 电源相关建议
      1. 7.3.1 输入和 ESD 保护
    4. 7.4 布局
      1. 7.4.1 布局指南
      2. 7.4.2 布局示例
  10. 器件和文档支持
    1. 8.1 文档支持
      1. 8.1.1 相关文档
    2. 8.2 接收文档更新通知
    3. 8.3 支持资源
    4. 8.4 商标
    5. 8.5 静电放电警告
    6. 8.6 术语表
  11. 修订历史记录
  12. 10机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

布局指南

为了使器件具有出色的运行性能,请使用良好的印刷电路板 (PCB) 布局实践,包括:

  • 噪声可以通过整个电路的电源引脚和运算放大器本身的电源引脚传入模拟电路。旁路电容用于通过为局部模拟电路提供低阻抗电源,以降低耦合噪声。
    • 在每个电源引脚和接地端之间连接低等效串联电阻 (ESR) 0.1µF 陶瓷旁路电容器,并尽量靠近器件放置。从 V+ 到接地端的单个旁路电容器足以满足单电源应用的需求。
  • 将电路中的模拟部分和数字部分单独接地是最简单、最有效的噪声抑制方法之一。多层 PCB 上的一层或多层通常专门用于作为接地平面。接地层有助于散热和降低电磁干扰 (EMI) 噪声拾取。请小心地对数字接地和模拟接地进行物理隔离,同时应注意接地电流。有关更多详细信息,请参阅电路板布局布线技巧
  • 为了减少寄生耦合,输入走线运行时应尽量远离电源或输出走线。如果这些走线不能保持分开,则以 90 度角穿过敏感走线比平行于噪声走线来排布走线要好得多。
  • 外部元件应尽量靠近器件放置。如图 7-5 所示,使 RF 和 RG 接近反相输入可最大限度地减小反相输入端的寄生电容。
  • 尽可能缩短输入布线的长度。切记,输入布线是电路中最敏感的部分。
  • 考虑在关键布线周围设定驱动型低阻抗保护环。这样可显著减少附近布线在不同电势下产生的漏电流。
  • 为获得卓越性能,建议在组装 PCB 板后进行清洁。
  • 任何精密集成电路都可能因湿气渗入塑料封装中而出现性能变化。在执行任何 PCB 水清洁流程之后,建议将 PCB 组件烘干,以去除清洁时渗入器件封装中的水分。大多数情形下,清洗后在 85°C 下低温烘干 30 分钟即可。