ZHCSQY7 september   2022 TMAG5173-Q1

ADVANCE INFORMATION  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  Temperature Sensor
    7. 6.7  Magnetic Characteristics For A1
    8. 6.8  Magnetic Characteristics For A2
    9. 6.9  Magnetic Temp Compensation Characteristics
    10. 6.10 I2C Interface Timing
    11. 6.11 Power up Timing
    12. 6.12 Typical Characteristics
  8. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 Feature Description
      1. 7.3.1 磁通量方向
      2. 7.3.2 Sensor Location
      3. 7.3.3 Interrupt Function
      4. 7.3.4 Device I2C Address
      5. 7.3.5 Magnetic Range Selection
      6. 7.3.6 Update Rate Settings
    4. 7.4 Device Functional Modes
      1. 7.4.1 Standby (Trigger) Mode
      2. 7.4.2 Sleep Mode
      3. 7.4.3 Wake-up and Sleep (W&S) Mode
      4. 7.4.4 Continuous Measure Mode
    5. 7.5 Programming
      1. 7.5.1 I2C 接口
        1. 7.5.1.1 SCL
        2. 7.5.1.2 SDA
        3. 7.5.1.3 I2C Read/Write
          1. 7.5.1.3.1 标准 I2C 写入
          2. 7.5.1.3.2 通用广播写入
          3. 7.5.1.3.3 Standard 3-Byte I2C Read
          4. 7.5.1.3.4 1-Byte I2C Read Command for 16-Bit Data
          5. 7.5.1.3.5 1-Byte I2C Read Command for 8-Bit Data
          6. 7.5.1.3.6 I2C Read CRC
      2. 7.5.2 数据定义
        1. 7.5.2.1 磁传感器数据
        2. 7.5.2.2 Temperature Sensor Data
        3. 7.5.2.3 Angle and Magnitude Data Definition
        4. 7.5.2.4 Magnetic Sensor Offset Correction
    6. 7.6 TMAG5173 Registers
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Select the Sensitivity Option
      2. 8.1.2 Temperature Compensation for Magnets
      3. 8.1.3 Sensor Conversion
        1. 8.1.3.1 Continuous Conversion
        2. 8.1.3.2 Trigger Conversion
        3. 8.1.3.3 Pseudo-Simultaneous Sampling
      4. 8.1.4 Magnetic Limit Check
      5. 8.1.5 Error Calculation During Linear Measurement
      6. 8.1.6 Error Calculation During Angular Measurement
    2. 8.2 Typical Applications
      1. 8.2.1 I2C Address Expansion
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
      2. 8.2.2 Angle Measurement
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 Gain Adjustment for Angle Measurement
        3. 8.2.2.3 Application Curves
    3. 8.3 What to Do and What Not to Do
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 文档支持
      1. 9.1.1 Related Documentation
    2. 9.2 接收文档更新通知
    3. 9.3 支持资源
    4. 9.4 商标
    5. 9.5 静电放电警告
    6. 9.6 术语表
  11. 10机械、封装和可订购信息
    1. 10.1 Package Option Addendum
    2. 10.2 Tape and Reel Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Interrupt Function

The TMAG5173-Q1 supports flexible and configurable interrupt functions through either the INT or the SCL pin. Table 7-1 shows different conversion completion events where result registers and SET_COUNT bits update, and where they do not.

Table 7-1 Result Register & SET_COUNT Update After Conversion Completion
INT_MODEMODE DESCRIPTIONI2C BUS BUSY, NOT TALKING TO DEVICEI2C BUS BUSY & TALKING TO DEVICEI2C BUS NOT BUSY
RESULT UPDATE?SET_COUNT UPDATE?RESULT UPDATE?SET_COUNT UPDATE?RESULT UPDATE?SET_COUNT UPDATE?
000b No interrupt Yes Yes No No Yes Yes
001b Interrupt through INT Yes Yes No No Yes Yes
010b Interrupt through INT except when I2C busy Yes Yes No No Yes Yes
011b Interrupt through SCL Yes Yes No No Yes Yes
100b Interrupt through SCL except when I2C busy No No No No Yes Yes
Note:

TI does not recommend sharing the same I2C bus with multiple secondary devices when using the SCL pin for interrupt function. The SCL interrupt may corrupt transactions with other secondary devices if present in the same I2C bus.

7.3.3.1 Interrupt Through SCL

Figure 7-3 shows an example for interrupt function through the SCL pin with the device programmed to wake-up and sleep mode for threshold cross at a predefined intervals. The wake-up intervals can be set through the SLEEPTIME bits. When the magnetic threshold cross is detected, the device asserts a fixed width interrupt signal through the SCL pin, and goes back to standby mode.

GUID-20210610-CA0I-TXFF-JWXL-MVQKMK9BC7RN-low.svg Figure 7-3 Interrupt Through SCL

7.3.3.2 Fixed Width Interrupt Through INT

Figure 7-4 shows an example for fixed-width interrupt function through the INT pin. The device is programmed to be in wake-up and sleep mode to detect a magnetic threshold. The INT_STATE register bit is set 1b. When the magnetic threshold cross is detected, the device asserts a fixed width interrupt signal through the INT pin, and goes back to standby mode.

GUID-20210610-CA0I-RLTS-6GFW-7WSG42FRW31W-low.svg Figure 7-4 Fixed Width Interrupt Through INT

7.3.3.3 Latched Interrupt Through INT

Figure 7-5 shows an example for latched interrupt function through the INT pin. The device is programmed to be in wake-up and sleep mode to detect a magnetic threshold. The INT_STATE register bit is set 0b. When the magnetic threshold cross is detected, the device asserts a latched interrupt signal through the INT pin, and goes back to standby mode. The interrupt latch is cleared only after the device receives a valid address through the SCL line.

GUID-20210610-CA0I-G0R0-P1W0-RGNHSLDQZHN0-low.svg Figure 7-5 Latched Interrupt Through INT