ZHCSDR5B March   2012  – April 2015 TMS320C6654

PRODUCTION DATA.  

  1. C6654 特性和描述
    1. 1.1 特性
    2. 1.2 KeyStone 架构
    3. 1.3 器件描述
    4. 1.4 功能方框图
  2. 修订历史记录
  3. Device Overview
    1. 3.1 Device Characteristics
    2. 3.2 DSP Core Description
    3. 3.3 Memory Map Summary
    4. 3.4 Boot Sequence
    5. 3.5 Boot Modes Supported and PLL Settings
      1. 3.5.1 Boot Device Field
      2. 3.5.2 Device Configuration Field
        1. 3.5.2.1 EMIF16 / UART / No Boot Device Configuration
          1. 3.5.2.1.1 No Boot Mode
          2. 3.5.2.1.2 UART Boot Mode
          3. 3.5.2.1.3 EMIF16 Boot Mode
        2. 3.5.2.2 Ethernet (SGMII) Boot Device Configuration
        3. 3.5.2.3 NAND Boot Device Configuration
        4. 3.5.2.4 PCI Boot Device Configuration
        5. 3.5.2.5 I2C Boot Device Configuration
          1. 3.5.2.5.1 I2C Master Mode
          2. 3.5.2.5.2 I2C Passive Mode
        6. 3.5.2.6 SPI Boot Device Configuration
      3. 3.5.3 Boot Parameter Table
        1. 3.5.3.1 Sleep / XIP Mode Parameter Table
        2. 3.5.3.2 SRIO Mode Boot Parameter Table
        3. 3.5.3.3 Ethernet Mode Boot Parameter Table
        4. 3.5.3.4 NAND Mode Boot Parameter Table
        5. 3.5.3.5 PCIE Mode Boot Parameter Table
        6. 3.5.3.6 I2C Mode Boot Parameter Table
        7. 3.5.3.7 SPI Mode Boot Parameter Table
        8. 3.5.3.8 Hyperlink Mode Boot Parameter Table
        9. 3.5.3.9 UART Mode Boot Parameter Table
    6. 3.6 PLL Boot Configuration Settings
    7. 3.7 Second-Level Bootloaders
    8. 3.8 Terminals
      1. 3.8.1 Package Terminals
      2. 3.8.2 Pin Map
    9. 3.9 Terminal Functions
  4. Device Configuration
    1. 4.1 Device Configuration at Device Reset
    2. 4.2 Peripheral Selection After Device Reset
    3. 4.3 Device State Control Registers
      1. 4.3.1  Device Status Register
      2. 4.3.2  Device Configuration Register
      3. 4.3.3  JTAG ID (JTAGID) Register Description
      4. 4.3.4  Kicker Mechanism (KICK0 and KICK1) Register
      5. 4.3.5  LRESETNMI PIN Status (LRSTNMIPINSTAT) Register
      6. 4.3.6  LRESETNMI PIN Status Clear (LRSTNMIPINSTAT_CLR) Register
      7. 4.3.7  Reset Status (RESET_STAT) Register
      8. 4.3.8  Reset Status Clear (RESET_STAT_CLR) Register
      9. 4.3.9  Boot Complete (BOOTCOMPLETE) Register
      10. 4.3.10 Power State Control (PWRSTATECTL) Register
      11. 4.3.11 NMI Event Generation to CorePac (NMIGRx) Register
      12. 4.3.12 IPC Generation (IPCGRx) Registers
      13. 4.3.13 IPC Acknowledgement (IPCARx) Registers
      14. 4.3.14 IPC Generation Host (IPCGRH) Register
      15. 4.3.15 IPC Acknowledgement Host (IPCARH) Register
      16. 4.3.16 Timer Input Selection Register (TINPSEL)
      17. 4.3.17 Timer Output Selection Register (TOUTPSEL)
      18. 4.3.18 Reset Mux (RSTMUXx) Register
      19. 4.3.19 Device Speed (DEVSPEED) Register
      20. 4.3.20 Pin Control 0 (PIN_CONTROL_0) Register
      21. 4.3.21 Pin Control 1 (PIN_CONTROL_1) Register
      22. 4.3.22 uPP Clock Source (UPP_CLOCK) Register
    4. 4.4 Pullup/Pulldown Resistors
  5. System Interconnect
    1. 5.1 Internal Buses and Switch Fabrics
    2. 5.2 Switch Fabric Connections Matrix
    3. 5.3 TeraNet Switch Fabric Connections
    4. 5.4 Bus Priorities
      1. 5.4.1 Packet DMA Priority Allocation (PKTDMA_PRI_ALLOC) Register
      2. 5.4.2 EMAC / uPP Priority Allocation (EMAC_UPP_PRI_ALLOC) Register
  6. C66x CorePac
    1. 6.1 Memory Architecture
      1. 6.1.1 L1P Memory
      2. 6.1.2 L1D Memory
      3. 6.1.3 L2 Memory
      4. 6.1.4 MSM Controller
      5. 6.1.5 L3 Memory
    2. 6.2 Memory Protection
    3. 6.3 Bandwidth Management
    4. 6.4 Power-Down Control
    5. 6.5 C66x CorePac Revision
    6. 6.6 C66x CorePac Register Descriptions
  7. Device Operating Conditions
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Recommended Operating Conditions
    3. 7.3 Electrical Characteristics
    4. 7.4 Power Supply to Peripheral I/O Mapping
  8. Peripheral Information and Electrical Specifications
    1. 8.1  Recommended Clock and Control Signal Transition Behavior
    2. 8.2  Power Supplies
      1. 8.2.1 Power-Supply Sequencing
        1. 8.2.1.1 Core-Before-IO Power Sequencing
        2. 8.2.1.2 IO-Before-Core Power Sequencing
        3. 8.2.1.3 Prolonged Resets
        4. 8.2.1.4 Clocking During Power Sequencing
      2. 8.2.2 Power-Down Sequence
      3. 8.2.3 Power Supply Decoupling and Bulk Capacitors
      4. 8.2.4 SmartReflex
    3. 8.3  Power Sleep Controller (PSC)
      1. 8.3.1 Power Domains
      2. 8.3.2 Clock Domains
      3. 8.3.3 PSC Register Memory Map
    4. 8.4  Reset Controller
      1. 8.4.1 Power-on Reset
      2. 8.4.2 Hard Reset
      3. 8.4.3 Soft Reset
      4. 8.4.4 Local Reset
      5. 8.4.5 Reset Priority
      6. 8.4.6 Reset Controller Register
      7. 8.4.7 Reset Electrical Data / Timing
    5. 8.5  Main PLL and PLL Controller
      1. 8.5.1 Main PLL Controller Device-Specific Information
        1. 8.5.1.1 Internal Clocks and Maximum Operating Frequencies
        2. 8.5.1.2 Main PLL Controller Operating Modes
        3. 8.5.1.3 Main PLL Stabilization, Lock, and Reset Times
      2. 8.5.2 PLL Controller Memory Map
        1. 8.5.2.1 PLL Secondary Control Register (SECCTL)
        2. 8.5.2.2 PLL Controller Divider Register (PLLDIV2, PLLDIV5, PLLDIV8)
        3. 8.5.2.3 PLL Controller Clock Align Control Register (ALNCTL)
        4. 8.5.2.4 PLLDIV Divider Ratio Change Status Register (DCHANGE)
        5. 8.5.2.5 SYSCLK Status Register (SYSTAT)
        6. 8.5.2.6 Reset Type Status Register (RSTYPE)
        7. 8.5.2.7 Reset Control Register (RSTCTRL)
        8. 8.5.2.8 Reset Configuration Register (RSTCFG)
        9. 8.5.2.9 Reset Isolation Register (RSISO)
      3. 8.5.3 Main PLL Control Register
      4. 8.5.4 Main PLL and PLL Controller Initialization Sequence
      5. 8.5.5 Main PLL Controller/PCIe Clock Input Electrical Data/Timing
    6. 8.6  DDR3 PLL
      1. 8.6.1 DDR3 PLL Control Register
      2. 8.6.2 DDR3 PLL Device-Specific Information
      3. 8.6.3 DDR3 PLL Initialization Sequence
      4. 8.6.4 DDR3 PLL Input Clock Electrical Data/Timing
    7. 8.7  Enhanced Direct Memory Access (EDMA3) Controller
      1. 8.7.1 EDMA3 Device-Specific Information
      2. 8.7.2 EDMA3 Channel Controller Configuration
      3. 8.7.3 EDMA3 Transfer Controller Configuration
      4. 8.7.4 EDMA3 Channel Synchronization Events
    8. 8.8  Interrupts
      1. 8.8.1 Interrupt Sources and Interrupt Controller
      2. 8.8.2 CIC Registers
        1. 8.8.2.1 CIC0 Register Map
        2. 8.8.2.2 CIC1 Register Map
      3. 8.8.3 Inter-Processor Register Map
      4. 8.8.4 NMI and LRESET
      5. 8.8.5 External Interrupts Electrical Data/Timing
    9. 8.9  Memory Protection Unit (MPU)
      1. 8.9.1 MPU Registers
        1. 8.9.1.1 MPU Register Map
        2. 8.9.1.2 Device-Specific MPU Registers
          1. 8.9.1.2.1 Configuration Register (CONFIG)
      2. 8.9.2 MPU Programmable Range Registers
        1. 8.9.2.1 Programmable Range n Start Address Register (PROGn_MPSAR)
        2. 8.9.2.2 Programmable Range n End Address Register (PROGn_MPEAR)
        3. 8.9.2.3 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPA)
        4. 8.9.2.4 MPU Registers Reset Values
    10. 8.10 DDR3 Memory Controller
      1. 8.10.1 DDR3 Memory Controller Device-Specific Information
      2. 8.10.2 DDR3 Memory Controller Electrical Data/Timing
    11. 8.11 I2C Peripheral
      1. 8.11.1 I2C Device-Specific Information
      2. 8.11.2 I2C Peripheral Register Description(s)
      3. 8.11.3 I2C Electrical Data/Timing
        1. 8.11.3.1 Inter-Integrated Circuits (I2C) Timing
    12. 8.12 SPI Peripheral
      1. 8.12.1 SPI Electrical Data/Timing
        1. 8.12.1.1 SPI Timing
    13. 8.13 UART Peripheral
    14. 8.14 PCIe Peripheral
    15. 8.15 EMIF16 Peripheral
      1. 8.15.1 EMIF16 Electrical Data/Timing
    16. 8.16 Ethernet Media Access Controller (EMAC)
      1. 8.16.1 EMAC Device-Specific Information
      2. 8.16.2 EMAC Peripheral Register Description(s)
      3. 8.16.3 EMAC Electrical Data/Timing (SGMII)
    17. 8.17 Management Data Input/Output (MDIO)
      1. 8.17.1 MDIO Peripheral Registers
      2. 8.17.2 MDIO Timing
    18. 8.18 Timers
      1. 8.18.1 Timers Device-Specific Information
      2. 8.18.2 Timers Electrical Data/Timing
    19. 8.19 General-Purpose Input/Output (GPIO)
      1. 8.19.1 GPIO Device-Specific Information
      2. 8.19.2 GPIO Electrical Data/Timing
    20. 8.20 Semaphore2
    21. 8.21 Multichannel Buffered Serial Port (McBSP)
      1. 8.21.1 McBSP Peripheral Register
      2. 8.21.2 McBSP Electrical Data/Timing
        1. 8.21.2.1 McBSP Timing
    22. 8.22 Universal Parallel Port (uPP)
      1. 8.22.1 uPP Register Descriptions
    23. 8.23 Emulation Features and Capability
      1. 8.23.1 Advanced Event Triggering (AET)
      2. 8.23.2 Trace
        1. 8.23.2.1 Trace Electrical Data/Timing
      3. 8.23.3 IEEE 1149.1 JTAG
        1. 8.23.3.1 IEEE 1149.1 JTAG Compatibility Statement
        2. 8.23.3.2 JTAG Electrical Data/Timing
  9. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
      2. 9.1.2 Device and Development-Support Tool Nomenclature
    2. 9.2 Documentation Support
      1. 9.2.1 Related Links
      2. 9.2.2 社区资源
    3. 9.3 商标
    4. 9.4 静电放电警告
    5. 9.5 Glossary
  10. 10Mechanical Data
    1. 10.1 Thermal Data
    2. 10.2 Packaging Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • CZH|625
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 C66x CorePac

The C66x CorePac consists of several components:

  • The C66x DSP and associated C66x CorePac core
  • Level-one and level-two memories (L1P, L1D, L2)
  • Data Trace Formatter (DTF)
  • Embedded Trace Buffer (ETB)
  • Interrupt Controller
  • Power-down controller
  • External Memory Controller
  • Extended Memory Controller
  • A dedicated power/sleep controller (LPSC)

The C66x CorePac also provides support for memory protection, bandwidth management (for resources local to the C66x CorePac) and address extension. Figure 6-1 shows a block diagram of the C66x CorePac.

TMS320C6654 C66x_CorePac_Block_Diagram_6654.gifFigure 6-1 C66x CorePac Block Diagram

For more detailed information on the TMS320C66x CorePac on the C6654 device, see the C66x CorePac User's Guide (SPRUGW0).

6.1 Memory Architecture

The C66x CorePac in the device contains a 1024KB level-2 memory (L2), a 32KB level-1 program memory (L1P), and a 32KB level-1 data memory (L1D). The C6654 devices also contain a 1024KB multicore shared memory (MSM). All memory on the C6654 has a unique location in the memory map (see Table 3-2).

After device reset, L1P and L1D cache are configured as all cache, by default. The L1P and L1D cache can be reconfigured via software through the L1PMODE field of the L1P Configuration Register (L1PCFG) and the L1DMODE field of the L1D Configuration Register (L1DCFG) of the C66x CorePac. L1D is a two-way set-associative cache, while L1P is a direct-mapped cache.

The on-chip bootloader changes the reset configuration for L1P and L1D. For more information, see the Bootloader for the C66x DSP User's Guide (SPRUGY5).

For more information on the operation L1 and L2 caches, see the C66x DSP Cache User's Guide (SPRUGY8).

6.1.1 L1P Memory

The L1P memory configuration for the C6654 device is as follows:

  • 32K bytes with no wait states

Figure 6-2 shows the available SRAM/cache configurations for L1P.

TMS320C6654 L1P_Memory_CFG_6678.gifFigure 6-2 L1P Memory Configurations

6.1.2 L1D Memory

The L1D memory configuration for the C6654 device is as follows:

  • 32K bytes with no wait states

Figure 6-3 shows the available SRAM/cache configurations for L1D.

TMS320C6654 L1D_Memory_CFG_6678.gifFigure 6-3 L1D Memory Configurations

6.1.3 L2 Memory

The L2 memory configuration for the C6654 device is as follows:

  • Total memory is 1024KB
  • Each core contains 1024KB of memory
  • Local starting address for each core is 0080 0000h

L2 memory can be configured as all SRAM, all 4-way set-associative cache, or a mix of the two. The amount of L2 memory that is configured as cache is controlled through the L2MODE field of the L2 Configuration Register (L2CFG) of the C66x CorePac. Figure 6-4 shows the available SRAM/cache configurations for L2. By default, L2 is configured as all SRAM after device reset.

TMS320C6654 L2_Memory_Configuration_6655-57.gifFigure 6-4 L2 Memory Configurations

Global addresses are accessible to all masters in the system. In addition, local memory can be accessed directly by the associated processor through aliased addresses, where the eight MSBs are masked to zero. The aliasing is handled within the C66x CorePac and allows for common code to be run unmodified on multiple cores. For example, address location 0x10800000 is the global base address for C66x CorePac Core 0's L2 memory. C66x CorePac Core 0 can access this location by either using 0x10800000 or 0x00800000. Any other master on the device must use 0x10800000 only. Conversely, 0x00800000 can by used by any of the cores as their own L2 base addresses.

For C66x CorePac Core 0, address 0x00800000 is equivalent to 0x10800000. Local addresses should be used only for shared code or data, allowing a single image to be included in memory. Any code/data targeted to a specific core, or a memory region allocated during run-time by a particular core should always use the global address only.

6.1.4 MSM Controller

The MSM configuration for the device is as follows:

  • Allows extension of external addresses from 2GB to up to 8GB
  • Has built in memory protection features

For more details on external memory address extension and memory protection features, see the Multicore Shared Memory Controller (MSMC) for KeyStone Devices User's Guide (SPRUGW7).

6.1.5 L3 Memory

The L3 ROM on the device is 128KB. The ROM contains software used to boot the device. There is no requirement to block accesses from this portion to the ROM.

6.2 Memory Protection

Memory protection allows an operating system to define who or what is authorized to access L1D, L1P, and L2 memory. To accomplish this, the L1D, L1P, and L2 memories are divided into pages. There are 16 pages of L1P (2KB each), 16 pages of L1D (2KB each), and 32 pages of L2 (16KB each). The L1D, L1P, and L2 memory controllers in the C66x CorePac are equipped with a set of registers that specify the permissions for each memory page.

Each page may be assigned with fully orthogonal user and supervisor read, write, and execute permissions. In addition, a page may be marked as either (or both) locally accessible or globally accessible. A local access is a direct DSP access to L1D, L1P, and L2, while a global access is initiated by a DMA (either IDMA or the EDMA3) or by other system masters. Note that EDMA or IDMA transfers programmed by the DSP count as global accesses.

The DSP and each of the system masters on the device are all assigned a privilege ID. It is possible to specify whether memory pages are locally or globally accessible.

The AIDx and LOCAL bits of the memory protection page attribute registers specify the memory page protection scheme, see Table 6-1.

Table 6-1 Available Memory Page Protection Schemes

AIDx BIT LOCAL BIT DESCRIPTION
0 0 No access to memory page is permitted.
0 1 Only direct access by DSP is permitted.
1 0 Only accesses by system masters and IDMA are permitted (includes EDMA and IDMA accesses initiated by the DSP).
1 1 All accesses permitted.

Faults are handled by software in an interrupt (or an exception, programmable within the C66x CorePac interrupt controller) service routine. A DSP or DMA access to a page without the proper permissions will:

  • Block the access — reads return 0, writes are ignored
  • Capture the initiator in a status register — ID, address, and access type are stored
  • Signal event to DSP interrupt controller

The software is responsible for taking corrective action to respond to the event and resetting the error status in the memory controller. For more information on memory protection for L1D, L1P, and L2, see the C66x CorePac User's Guide (SPRUGW0).

6.3 Bandwidth Management

When multiple requestors contend for a single C66x CorePac resource, the conflict is resolved by granting access to the highest priority requestor. The following four resources are managed by the Bandwidth Management control hardware:

  • Level 1 Program (L1P) SRAM/Cache
  • Level 1 Data (L1D) SRAM/Cache
  • Level 2 (L2) SRAM/Cache
  • Memory-mapped registers configuration bus

The priority level for operations initiated within the C66x CorePac are declared through registers in the C66x CorePac. These operations are:

  • DSP-initiated transfers
  • User-programmed cache coherency operations
  • IDMA-initiated transfers

The priority level for operations initiated outside the C66x CorePac by system peripherals is declared through the Priority Allocation Register (PRI_ALLOC), see Section 5.4 for more details. System peripherals with no fields in the PRI_ALLOC have their own registers to program their priorities.

More information on the bandwidth management features of the C66x CorePac can be found in the C66x CorePac User's Guide (SPRUGW0).

6.4 Power-Down Control

The C66x CorePac supports the ability to power down various parts of the C66x CorePac. The power down controller (PDC) of the C66x CorePac can be used to power down L1P, the cache control hardware, the DSP, and the entire C66x CorePac. These power-down features can be used to design systems for lower overall system power requirements.

NOTE

The C6654 does not support power-down modes for the L2 memory at this time.

More information on the power-down features of the C66x CorePac can be found in the C66x CorePac User's Guide (SPRUGW0).

6.5 C66x CorePac Revision

The version and revision of the C66x CorePac can be read from the CorePac Revision ID Register (MM_REVID) located at address 0181 2000h. The MM_REVID register is shown in Figure 6-5 and described in Table 6-2. The C66x CorePac revision is dependent on the silicon revision being used.

Figure 6-5 CorePac Revision ID Register (MM_REVID) Address - 0181 2000h
31 16 15 0
VERSION REVISION
R-n R-n
Legend: R = Read; -n = value after reset

Table 6-2 CorePac Revision ID Register (MM_REVID) Field Descriptions

Bit Field Description
31-16 VERSION Version of the C66x CorePac implemented on the device.
15-0 REVISION Revision of the C66x CorePac version implemented on the device.

6.6 C66x CorePac Register Descriptions

See the C66x CorePac Reference Guide (SPRUGW0) for register offsets and definitions.