ZHCSV76A June   2022  – March 2024 TMS570LC4357-SEP

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
    1. 3.1 功能方框图
  5. Device Comparison
  6. Terminal Configuration and Functions
    1. 5.1 GWT BGA Package Ball-Map (337 Terminal Grid Array)
    2. 5.2 Terminal Functions
      1. 5.2.1 GWT Package
        1. 5.2.1.1  Multibuffered Analog-to-Digital Converters (MibADC)
        2. 5.2.1.2  Enhanced High-End Timer Modules (N2HET)
        3. 5.2.1.3  RAM Trace Port (RTP)
        4. 5.2.1.4  Enhanced Capture Modules (eCAP)
        5. 5.2.1.5  Enhanced Quadrature Encoder Pulse Modules (eQEP)
        6. 5.2.1.6  Enhanced Pulse-Width Modulator Modules (ePWM)
        7. 5.2.1.7  Data Modification Module (DMM)
        8. 5.2.1.8  General-Purpose Input / Output (GIO)
        9. 5.2.1.9  FlexRay Interface Controller (FlexRay)
        10. 5.2.1.10 Controller Area Network Controllers (DCAN)
        11. 5.2.1.11 Local Interconnect Network Interface Module (LIN)
        12. 5.2.1.12 Standard Serial Communication Interface (SCI)
        13. 5.2.1.13 Inter-Integrated Circuit Interface Module (I2C)
        14. 5.2.1.14 Multibuffered Serial Peripheral Interface Modules (MibSPI)
        15. 5.2.1.15 Ethernet Controller
        16. 5.2.1.16 External Memory Interface (EMIF)
        17. 5.2.1.17 Embedded Trace Macrocell Interface for Cortex-R5F (ETM-R5)
        18. 5.2.1.18 System Module Interface
        19. 5.2.1.19 Clock Inputs and Outputs
        20. 5.2.1.20 Test and Debug Modules Interface
        21. 5.2.1.21 Flash Supply and Test Pads
        22. 5.2.1.22 Supply for Core Logic: 1.2-V Nominal
        23. 5.2.1.23 Supply for I/O Cells: 3.3-V Nominal
        24. 5.2.1.24 Ground Reference for All Supplies Except VCCAD
        25. 5.2.1.25 Other Supplies
      2. 5.2.2 Multiplexing
        1. 5.2.2.1 Output Multiplexing
          1. 5.2.2.1.1 Notes on Output Multiplexing
        2. 5.2.2.2 Input Multiplexing
          1. 5.2.2.2.1 Notes on Input Multiplexing
          2. 5.2.2.2.2 General Rules for Multiplexing Control Registers
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Power-On Hours (POH)
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Switching Characteristics Over Recommended Operating Conditions for Clock Domains
    6. 6.6  Wait States Required - L2 Memories
    7. 6.7  Power Consumption Summary
    8. 6.8  Input/Output Electrical Characteristics Over Recommended Operating Conditions
    9. 6.9  Thermal Resistance Characteristics for the BGA Package (GWT)
    10. 6.10 Timing and Switching Characteristics
      1. 6.10.1 Output Buffer Drive Strengths
      2. 6.10.2 Input Timings
      3. 6.10.3 Output Timings
  8. System Information and Electrical Specifications
    1. 7.1  Device Power Domains
    2. 7.2  Voltage Monitor Characteristics
      1. 7.2.1 Important Considerations
      2. 7.2.2 Voltage Monitor Operation
      3. 7.2.3 Supply Filtering
    3. 7.3  Power Sequencing and Power-On Reset
      1. 7.3.1 Power-Up Sequence
      2. 7.3.2 Power-Down Sequence
      3. 7.3.3 Power-On Reset: nPORRST
        1. 7.3.3.1 nPORRST Electrical and Timing Requirements
    4. 7.4  Warm Reset (nRST)
      1. 7.4.1 Causes of Warm Reset
      2. 7.4.2 nRST Timing Requirements
    5. 7.5  Arm Cortex-R5F CPU Information
      1. 7.5.1 Summary of Arm Cortex-R5F CPU Features
      2. 7.5.2 Dual Core Implementation
      3.      73
      4. 7.5.3 Duplicate Clock Tree After GCLK
      5. 7.5.4 Arm Cortex-R5F CPU Compare Module (CCM) for Safety
        1. 7.5.4.1 Signal Compare Operating Modes
          1. 7.5.4.1.1 Active Compare Lockstep Mode
          2. 7.5.4.1.2 Self-Test Mode
          3. 7.5.4.1.3 Error Forcing Mode
          4. 7.5.4.1.4 Self-Test Error Forcing Mode
        2. 7.5.4.2 Bus Inactivity Monitor
        3. 7.5.4.3 CPU Registers Initialization
      6. 7.5.5 CPU Self-Test
        1. 7.5.5.1 Application Sequence for CPU Self-Test
        2. 7.5.5.2 CPU Self-Test Clock Configuration
        3. 7.5.5.3 CPU Self-Test Coverage
      7. 7.5.6 N2HET STC / LBIST Self-Test Coverage
    6. 7.6  Clocks
      1. 7.6.1 Clock Sources
        1. 7.6.1.1 Main Oscillator
          1. 7.6.1.1.1 Timing Requirements for Main Oscillator
        2. 7.6.1.2 Low-Power Oscillator
          1. 7.6.1.2.1 Features
          2.        94
          3. 7.6.1.2.2 LPO Electrical and Timing Specifications
        3. 7.6.1.3 Phase-Locked Loop (PLL) Clock Modules
          1. 7.6.1.3.1 Block Diagram
          2. 7.6.1.3.2 PLL Timing Specifications
        4. 7.6.1.4 External Clock Inputs
      2. 7.6.2 Clock Domains
        1. 7.6.2.1 Clock Domain Descriptions
        2. 7.6.2.2 Mapping of Clock Domains to Device Modules
      3. 7.6.3 Special Clock Source Selection Scheme for VCLKA4_DIVR_EMAC
      4. 7.6.4 Clock Test Mode
    7. 7.7  Clock Monitoring
      1. 7.7.1 Clock Monitor Timings
      2. 7.7.2 External Clock (ECLK) Output Functionality
      3. 7.7.3 Dual Clock Comparators
        1. 7.7.3.1 Features
        2. 7.7.3.2 Mapping of DCC Clock Source Inputs
    8. 7.8  Glitch Filters
    9. 7.9  Device Memory Map
      1. 7.9.1 Memory Map Diagram
      2. 7.9.2 Memory Map Table
      3. 7.9.3 Special Consideration for CPU Access Errors Resulting in Imprecise Aborts
      4. 7.9.4 Master/Slave Access Privileges
        1. 7.9.4.1 Special Notes on Accesses to Certain Slaves
      5. 7.9.5 MasterID to PCRx
      6. 7.9.6 CPU Interconnect Subsystem SDC MMR Port
      7. 7.9.7 Parameter Overlay Module (POM) Considerations
    10. 7.10 Flash Memory
      1. 7.10.1 Flash Memory Configuration
      2. 7.10.2 Main Features of Flash Module
      3. 7.10.3 ECC Protection for Flash Accesses
      4. 7.10.4 Flash Access Speeds
      5. 7.10.5 Flash Program and Erase Timings
        1. 7.10.5.1 Flash Program and Erase Timings for Program Flash
        2. 7.10.5.2 Flash Program and Erase Timings for Data Flash
    11. 7.11 L2RAMW (Level 2 RAM Interface Module)
      1. 7.11.1 L2 SRAM Initialization
    12. 7.12 ECC / Parity Protection for Accesses to Peripheral RAMs
    13. 7.13 On-Chip SRAM Initialization and Testing
      1. 7.13.1 On-Chip SRAM Self-Test Using PBIST
        1. 7.13.1.1 Features
        2. 7.13.1.2 PBIST RAM Groups
      2. 7.13.2 On-Chip SRAM Auto Initialization
    14. 7.14 External Memory Interface (EMIF)
      1. 7.14.1 Features
      2. 7.14.2 Electrical and Timing Specifications
        1. 7.14.2.1 Read Timing (Asynchronous RAM)
        2. 7.14.2.2 Write Timing (Asynchronous RAM)
        3. 7.14.2.3 EMIF Asynchronous Memory Timing
        4. 7.14.2.4 Read Timing (Synchronous RAM)
        5. 7.14.2.5 Write Timing (Synchronous RAM)
        6. 7.14.2.6 EMIF Synchronous Memory Timing
    15. 7.15 Vectored Interrupt Manager
      1. 7.15.1 VIM Features
      2. 7.15.2 Interrupt Generation
      3. 7.15.3 Interrupt Request Assignments
    16. 7.16 ECC Error Event Monitoring and Profiling
      1. 7.16.1 EPC Module Operation
        1. 7.16.1.1 Correctable Error Handling
        2. 7.16.1.2 Uncorrectable Error Handling
    17. 7.17 DMA Controller
      1. 7.17.1 DMA Features
      2. 7.17.2 DMA Transfer Port Assignment
      3. 7.17.3 Default DMA Request Map
      4. 7.17.4 Using a GIO terminal as a DMA Request Input
    18. 7.18 Real-Time Interrupt Module
      1. 7.18.1 Features
      2. 7.18.2 Block Diagrams
      3. 7.18.3 Clock Source Options
      4. 7.18.4 Network Time Synchronization Inputs
    19. 7.19 Error Signaling Module
      1. 7.19.1 ESM Features
      2. 7.19.2 ESM Channel Assignments
    20. 7.20 Reset / Abort / Error Sources
    21. 7.21 Digital Windowed Watchdog
    22. 7.22 Debug Subsystem
      1. 7.22.1  Block Diagram
      2. 7.22.2  Debug Components Memory Map
      3. 7.22.3  Embedded Cross Trigger
      4. 7.22.4  JTAG Identification Code
      5. 7.22.5  Debug ROM
      6. 7.22.6  JTAG Scan Interface Timings
      7. 7.22.7  Advanced JTAG Security Module
      8. 7.22.8  Embedded Trace Macrocell (ETM-R5)
        1. 7.22.8.1 ETM TRACECLKIN Selection
        2. 7.22.8.2 Timing Specifications
      9. 7.22.9  RAM Trace Port (RTP)
        1. 7.22.9.1 RTP Features
        2. 7.22.9.2 Timing Specifications
      10. 7.22.10 Data Modification Module (DMM)
        1. 7.22.10.1 DMM Features
        2. 7.22.10.2 Timing Specifications
      11. 7.22.11 Boundary Scan Chain
  9. Peripheral Information and Electrical Specifications
    1. 8.1  Enhanced Translator PWM Modules (ePWM)
      1. 8.1.1 ePWM Clocking and Reset
      2. 8.1.2 Synchronization of ePWMx Time-Base Counters
      3. 8.1.3 Synchronizing all ePWM Modules to the N2HET1 Module Time Base
      4. 8.1.4 Phase-Locking the Time-Base Clocks of Multiple ePWM Modules
      5. 8.1.5 ePWM Synchronization with External Devices
      6. 8.1.6 ePWM Trip Zones
        1. 8.1.6.1 Trip Zones TZ1n, TZ2n, TZ3n
        2. 8.1.6.2 Trip Zone TZ4n
        3. 8.1.6.3 Trip Zone TZ5n
        4. 8.1.6.4 Trip Zone TZ6n
      7. 8.1.7 Triggering of ADC Start of Conversion Using ePWMx SOCA and SOCB Outputs
      8. 8.1.8 Enhanced Translator-Pulse Width Modulator (ePWMx) Electrical Data/Timing
    2. 8.2  Enhanced Capture Modules (eCAP)
      1. 8.2.1 Clock Enable Control for eCAPx Modules
      2. 8.2.2 PWM Output Capability of eCAPx
      3. 8.2.3 Input Connection to eCAPx Modules
      4. 8.2.4 Enhanced Capture Module (eCAP) Electrical Data/Timing
    3. 8.3  Enhanced Quadrature Encoder (eQEP)
      1. 8.3.1 Clock Enable Control for eQEPx Modules
      2. 8.3.2 Using eQEPx Phase Error to Trip ePWMx Outputs
      3. 8.3.3 Input Connection to eQEPx Modules
      4. 8.3.4 Enhanced Quadrature Encoder Pulse (eQEPx) Timing
    4. 8.4  12-bit Multibuffered Analog-to-Digital Converter (MibADC)
      1. 8.4.1 MibADC Features
      2. 8.4.2 Event Trigger Options
        1. 8.4.2.1 MibADC1 Event Trigger Hookup
        2. 8.4.2.2 MibADC2 Event Trigger Hookup
        3. 8.4.2.3 Controlling ADC1 and ADC2 Event Trigger Options Using SOC Output from ePWM Modules
      3. 8.4.3 ADC Electrical and Timing Specifications
      4. 8.4.4 Performance (Accuracy) Specifications
        1. 8.4.4.1 MibADC Nonlinearity Errors
        2. 8.4.4.2 MibADC Total Error
    5. 8.5  General-Purpose Input/Output
      1. 8.5.1 Features
    6. 8.6  Enhanced High-End Timer (N2HET)
      1. 8.6.1 Features
      2. 8.6.2 N2HET RAM Organization
      3. 8.6.3 Input Timing Specifications
      4. 8.6.4 N2HET1-N2HET2 Interconnections
      5. 8.6.5 N2HET Checking
        1. 8.6.5.1 Internal Monitoring
        2. 8.6.5.2 Output Monitoring using Dual Clock Comparator (DCC)
      6. 8.6.6 Disabling N2HET Outputs
      7. 8.6.7 High-End Timer Transfer Unit (HET-TU)
        1. 8.6.7.1 Features
        2. 8.6.7.2 Trigger Connections
    7. 8.7  FlexRay Interface
      1. 8.7.1 Features
      2. 8.7.2 Electrical and Timing Specifications
      3. 8.7.3 FlexRay Transfer Unit
    8. 8.8  Controller Area Network (DCAN)
      1. 8.8.1 Features
      2. 8.8.2 241
      3. 8.8.3 Electrical and Timing Specifications
    9. 8.9  Local Interconnect Network Interface (LIN)
      1. 8.9.1 LIN Features
    10. 8.10 Serial Communication Interface (SCI)
      1. 8.10.1 Features
    11. 8.11 Inter-Integrated Circuit (I2C)
      1. 8.11.1 Features
      2. 8.11.2 I2C I/O Timing Specifications
    12. 8.12 Multibuffered / Standard Serial Peripheral Interface
      1. 8.12.1 Features
      2. 8.12.2 MibSPI Transmit and Receive RAM Organization
      3. 8.12.3 MibSPI Transmit Trigger Events
        1. 8.12.3.1 MIBSPI1 Event Trigger Hookup
        2. 8.12.3.2 MIBSPI2 Event Trigger Hookup
        3. 8.12.3.3 MIBSPI3 Event Trigger Hookup
        4. 8.12.3.4 MIBSPI4 Event Trigger Hookup
        5. 8.12.3.5 MIBSPI5 Event Trigger Hookup
      4. 8.12.4 MibSPI/SPI Master Mode I/O Timing Specifications
      5. 8.12.5 SPI Slave Mode I/O Timings
    13. 8.13 Ethernet Media Access Controller
      1. 8.13.1 Ethernet MII Electrical and Timing Specifications
      2. 8.13.2 Ethernet RMII Electrical and Timing Specifications
      3. 8.13.3 Management Data Input/Output (MDIO)
  10. Applications, Implementation, and Layout
    1. 9.1 TI Design or Reference Design
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Development Support
      2. 10.1.2 Device and Development-Support Tool Nomenclature
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation from Texas Instruments
      2. 10.2.2 Receiving Notification of Documentation Updates
    3. 10.3 支持资源
    4. 10.4 Trademarks
    5. 10.5 静电放电警告
    6. 10.6 术语表
    7. 10.7 Device Identification
      1. 10.7.1 Device Identification Code Register
      2. 10.7.2 Die Identification Registers
    8. 10.8 Module Certifications
      1. 10.8.1 FlexRay Certifications
      2. 10.8.2 DCAN Certification
      3. 10.8.3 LIN Certification
        1. 10.8.3.1 LIN Master Mode
        2. 10.8.3.2 LIN Slave Mode - Fixed Baud Rate
        3. 10.8.3.3 LIN Slave Mode - Adaptive Baud Rate
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Package Option Addendum

请参考 PDF 数据表获取器件具体的封装图。

On-Chip SRAM Auto Initialization

This microcontroller allows some of the on-chip memories to be initialized through the Memory Hardware Initialization mechanism in the system module. This hardware mechanism allows an application to program the memory arrays with error detection capability to a known state based on their error detection scheme (odd/even parity or ECC).

The MINITGCR register enables the memory initialization sequence, and the MSINENA register selects the memories that are to be initialized.

For more information on these registers, see the device-specific Technical Reference Manual.

The mapping of the different on-chip memories to the specific bits of the MSINENA registers is provided in (6).

Table 7-34 Memory Initialization
CONNECTING MODULE(3)(4)ADDRESS RANGESYS.MSINENA Register Bit #L2RAMW.MEMINT_ENA Register Bit #(1)
BASE ADDRESSENDING ADDRESS
L2 SRAM0x080000000x0800FFFF00
L2 SRAM0x080100000x0801FFFF01
L2 SRAM0x080200000x0802FFFF02
L2 SRAM0x080300000x0803FFFF03
L2 SRAM0x080400000x0804FFFF04
L2 SRAM0x080500000x0805FFFF05
L2 SRAM0x080600000x0806FFFF06
L2 SRAM0x080700000x0807FFFF07
MIBSPI5 RAM(2)0xFF0A00000xFF0BFFFF12n/a
MIBSPI4 RAM(2)0xFF0600000xFF07FFFF19n/a
MIBSPI3 RAM(2)0xFF0C00000xFF0DFFFF11n/a
MIBSPI2 RAM(2)0xFF0800000xFF09FFFF18n/a
MIBSPI1 RAM(2)0xFF0E00000xFF0FFFFF7n/a
DCAN4 RAM0xFF1800000xFF19FFFF20n/a
DCAN3 RAM0xFF1A00000xFF1BFFFF10n/a
DCAN2 RAM0xFF1C00000xFF1DFFFF6n/a
DCAN1 RAM0xFF1E00000xFF1FFFFF5n/a
MIBADC2 RAM0xFF3A00000xFF3BFFFF14n/a
MIBADC1 RAM0xFF3E00000xFF3FFFFF8n/a
NHET2 RAM0xFF4400000xFF45FFFF15n/a
NHET1 RAM0xFF4600000xFF47FFFF3n/a
HET TU2 RAM0xFF4C00000xFF4DFFFF16n/a
HET TU1 RAM0xFF4E00000xFF4FFFFF4n/a
DMA RAM0xFFF800000xFFF80FFF1n/a
VIM RAM0xFFF820000xFFF82FFF2n/a
FlexRay TU RAM0xFF5000000xFF51FFFF13n/a
The L2 SRAM from range 128KB to 512KB is divided into 8 memory regions. Each region has an associated control bit to enable auto-initialization.
The MibSPIx modules perform an initialization of the transmit and receive RAMs as soon as the multibuffered mode is enabled. This is independent of whether the application has already initialized these RAMs using the auto-initialization method or not. The MibSPIx modules must be released from reset by writing a 1 to the SPIGCR0 registers before starting auto-initialization on the respective RAMs.
If ECC protection is enabled for the CPU data RAM or peripheral SRAM modules, then the auto-initialization process also initializes the corresponding ECC space.
If parity protection is enabled for the peripheral SRAM modules, then the parity bits will also be initialized along with the SRAM modules.
Note:

Peripheral memories not listed in the table either do not support auto-initialization or have implemented auto-initialization controlled directly by their respective peripherals.