SLOS369G July   2002  – October 2015 TPA2005D1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Operating Characteristics
    7. 7.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Fully Differential Amplifier
        1. 9.3.1.1 Advantages of Fully Differential Amplifiers
      2. 9.3.2 Efficiency and Thermal Information
      3. 9.3.3 Eliminating the Output Filter with the TPA2005D1
        1. 9.3.3.1 Effect on Audio
        2. 9.3.3.2 Traditional Class-D Modulation Scheme
        3. 9.3.3.3 TPA2005D1 Modulation Scheme
        4. 9.3.3.4 Efficiency: Why You Must Use a Filter With the Traditional Class-D Modulation Scheme
        5. 9.3.3.5 Effects of Applying a Square Wave Into a Speaker
        6. 9.3.3.6 When to Use an Output Filter
      4. 9.3.4 Thermal and Short-Circuit Protection
    4. 9.4 Device Functional Modes
      1. 9.4.1 Summing Input Signals with the TPA2005D1
        1. 9.4.1.1 Summing Two Differential Input Signals
        2. 9.4.1.2 Summing a Differential Input Signal and a Single-Ended Input Signal
        3. 9.4.1.3 Summing Two Single-Ended Input Signals
      2. 9.4.2 Shutdown Mode
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 TPA2005D1 with Differential Input
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Component Selection
          2. 10.2.1.2.2 Input Resistors (RI)
          3. 10.2.1.2.3 Decoupling Capacitor (CS)
        3. 10.2.1.3 Application Curves
      2. 10.2.2 TPA2005D1 with Differential Input and Input Capacitors
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
          1. 10.2.2.2.1 Input Capacitors (CI)
      3. 10.2.3 TPA2005D1 with Single-Ended Input
        1. 10.2.3.1 Design Requirements
        2. 10.2.3.2 Detailed Design Procedure
  11. 11Power Supply Recommendations
    1. 11.1 Power Supply Decoupling Capacitors
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 Component Location
      2. 12.1.2 Trace Width
      3. 12.1.3 MicroStar Junior™ BGA Specifications
    2. 12.2 Layout Examples
  13. 13Device and Documentation Support
    1. 13.1 Community Resources
    2. 13.2 Trademarks
    3. 13.3 Electrostatic Discharge Caution
    4. 13.4 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • DGN|8
  • DRB|8
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VDD Supply voltage(2) In active mode –0.3 6 V
In SHUTDOWN mode –0.3 7 V
VI Input voltage –0.3 VDD + 0.3 V V
TA Operating free-air temperature –40 85 °C
TJ Operating junction temperature –40 85 °C
Tstg Storage temperature –65 150 °C
RL Load resistance 2.5 ≤ VDD ≤ 4.2 V 3.2 (Minimum) Ω
4.2 < VDD ≤ 6 V 6.4 (Minimum) Ω
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) For the MSOP (DGN) package option, the maximum VDD should be limited to 5 V if short-circuit protection is desired.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±3000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VDD Supply voltage 2.5 5.5 V
VIH High-level input voltage SHUTDOWN 2 VDD V
VIL Low-level input voltage SHUTDOWN 0 0.8 V
RI Input resistor Gain ≤ 20 V/V (26 dB) 15
VIC Common mode input voltage range VDD = 2.5 V, 5.5 V, CMRR ≤ –49 dB 0.5 VDD-0.8 V
TA Operating free-air temperature –40 85 °C

7.4 Thermal Information

THERMAL METRIC(1) TPA2005D1 UNIT
ZQY (MicroStar Junior) GQY (MicroStar Junior) DRB (VSON) DGN (MSOP PowerPAD)
15 PINS 15 PINS 8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 92.7 92.7 50.9 57.2 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 120.5 120.5 66.2 53.8 °C/W
RθJB Junction-to-board thermal resistance 104 104 25.9 33.7 °C/W
ψJT Junction-to-top characterization parameter 3.1 3.1 1.4 1.9 °C/W
ψJB Junction-to-board characterization parameter 44.8 44.8 26 33.47 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance n/a n/a 7 6.4 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

TA = 25°C, over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
|VOS| Output offset voltage (measured differentially) VI = 0 V, AV = 2 V/V, VDD = 2.5 V to 5.5 V 25 mV
PSRR Power supply rejection ratio VDD = 2.5 V to 5.5 V –75 –55 dB
CMRR Common mode rejection ratio VDD = 2.5 V to 5.5 V, VIC= VDD/2 to 0.5 V,
VIC= VDD/2 to VDD- 0.8 V
–68 –49 dB
|IIH| High-level input current VDD = 5.5 V, VI = 5.8 V 50 μA
|IIL| Low-level input current VDD = 5.5 V, VI = 0.3 V 1 μA
I(Q) Quiescent current VDD = 5.5 V, no load 3.4 4.5 mA
VDD = 3.6 V, no load 2.8
VDD = 2.5 V, no load 2.2 3.2
I(SD) Shutdown current V (SHUTDOWN) = 0.8 V, VDD = 2.5 V to 5.5 V 0.5 2 μA
rDS(on) Static drain-source on-state resistance VDD = 2.5 V 770
VDD = 3.6 V 590
VDD = 5.5 V 500
Output impedance in SHUTDOWN V (SHUTDOWN) = 0.8 V >1
f(sw) Switching frequency VDD = 2.5 V to 5.5 V 200 250 300 kHz
Gain
TPA2005D1 Qmin_los369.gif
TPA2005D1 Qtyp_los369.gif
TPA2005D1 Qmax_los369.gif
TPA2005D1 Qunit_los369.gif

7.6 Operating Characteristics

TA = 25°C, Gain = 2 V/V, RL = 8 Ω (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
PO Output power THD + N= 1%, f = 1 kHz, RL = 8 Ω VDD = 5 V 1.18 W
VDD = 3.6 V 0.58
VDD = 2.5 V 0.26
THD + N= 10%, f = 1 kHz, RL = 8 Ω VDD = 5 V 1.45 W
VDD = 3.6 V 0.75
VDD = 2.5 V 0.35
THD+N Total harmonic distortion plus noise PO = 1 W, f = 1 kHz, RL = 8 Ω VDD = 5 V 0.18%
PO = 0.5 W, f = 1 kHz, RL = 8 Ω VDD = 3.6 V 0.19%
PO = 200 mW, f = 1 kHz, RL = 8 Ω VDD = 2.5 V 0.20%
kSVR Supply ripple rejection ratio f = 217 Hz, V(RIPPLE) = 200 mVpp
Inputs ac-grounded with Ci = 2 μF
VDD = 3.6 V –71 dB
SNR Signal-to-noise ratio PO= 1 W, RL = 8 Ω VDD = 5 V 97 dB
Vn Output voltage noise VDD = 3.6 V, f = 20 Hz to 20 kHz,
Inputs ac-grounded with Ci = 2 μF
No weighting 48 μVRMS
A weighting 36
CMRR Common mode rejection ratio VIC = 1 Vpp , f = 217 Hz VDD = 3.6 V –63 dB
ZI Input impedance 142 150 158
Start-up time from shutdown VDD = 3.6 V 9 ms

7.7 Typical Characteristics

TPA2005D1 tc_eff_op_los369.gif
Figure 1. Efficiency vs Output Power
TPA2005D1 effa_po_los369.gif
Figure 3. Efficiency vs Output Power
TPA2005D1 tc_supcurr_los369.gif
Figure 5. Supply Current vs Output Power
TPA2005D1 tc_Qcurr_los369.gif
Figure 7. Quiescent Current vs Supply Voltage
TPA2005D1 tc_OutpwrSV_los369.gif
Figure 9. Output Power vs Supply Voltage
TPA2005D1 poa_rl_los369.gif
Figure 11. Output Power vs Load Resistance
TPA2005D1 thdn_po_los369.gif
Figure 13. Total Harmonic Distortion + Noise vs Output Power
TPA2005D1 tc_totHDN1_los369.gif
Figure 15. Total Harmonic Distortion + Noise vs Output Power
TPA2005D1 tc_totHNDF1_los369.gif
Figure 17. Total Harmonic Distortion + Noise vs Frequency
TPA2005D1 tc_totHDNF3_los369.gif
Figure 19. Total Harmonic Distortion + Noise vs Frequency
TPA2005D1 thdnb_f_los369.gif
Figure 21. Total Harmonic Distortion + Noise vs Frequency
TPA2005D1 tc_totHarm_los369.gif
Figure 23. Total Harmonic Distortion + Noise vs
Common Mode Input Voltage
TPA2005D1 tc_SupVRR1_los369.gif
Figure 25. Supply Voltage Rejection Ratio vs Frequency 25
TPA2005D1 tc_SupVCM_los369.gif
Figure 27. Supply Voltage Rejection Ratio vs
Common-mode Input Voltage
TPA2005D1 tc_GSM_F_los369.gif
Figure 29. GSM Power Supply Rejection vs Frequency
TPA2005D1 tc_CMRR_CM_los369.gif
Figure 31. Common-mode Rejection Ratio vs
Common-mode Input Voltage
TPA2005D1 tc_eff_op1_los369.gif
Figure 2. Efficiency vs Output Power
TPA2005D1 tc_powdissp_los369.gif
Figure 4. Power Dissipation vs Output Power
TPA2005D1 tc_supcurr1_los369.gif
Figure 6. Supply Current vs Output Power
TPA2005D1 tc_shutcurr_los369.gif
Figure 8. Shutdown Current vs Shutdown Voltage
TPA2005D1 poa_vdd_los369.gif
Figure 10. Output Power vs Supply Voltage
TPA2005D1 po2a_rl_los369.gif
Figure 12. Output Power vs Load Resistance
TPA2005D1 tc_totHDN_los369.gif
Figure 14. Total Harmonic Distortion + Noise vs Output Power
TPA2005D1 tc_totHNDF_los369.gif
Figure 16. Total Harmonic Distortion + Noise vs Frequency
TPA2005D1 tc_totHDNF2_los369.gif
Figure 18. Total Harmonic Distortion + Noise vs Frequency
TPA2005D1 thdna_f_los369.gif
Figure 20. Total Harmonic Distortion + Noise vs Frequency
TPA2005D1 thdnc_f_los369.gif
Figure 22. Total Harmonic Distortion + Noise vs Frequency
TPA2005D1 tc_SupVRR_los369.gif
Figure 24. Supply Voltage Rejection Ratio vs Frequency
TPA2005D1 tc_SupVRR2_los369.gif
Figure 26. Supply Voltage Rejection Ratio vs Frequency
TPA2005D1 tc_GSM_T_los369.gif
Figure 28. GSM Power Supply Rejection vs Time
TPA2005D1 tc_CMRR_F_los369.gif
Figure 30. Common-mode Rejection Ratio vs Frequency