ZHCSE79C March   2011  – September 2015

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Operating Characteristics
    7. 6.7 Timing Requirements
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Voltage Divider Mode
      3. 7.4.3 Rheostat Mode
    5. 7.5 Programming with I2C
      1. 7.5.1 I2C General Operation
        1. 7.5.1.1 I2C Interface
        2. 7.5.1.2 START and STOP Conditions
        3. 7.5.1.3 Data Validity and Byte Formation
        4. 7.5.1.4 Acknowledge (ACK) and Not Acknowledge (NACK)
      2. 7.5.2 I2C Write and Read Operation
        1. 7.5.2.1 Auto Increment Function
        2. 7.5.2.2 Write Operation
        3. 7.5.2.3 Repeated Start
        4. 7.5.2.4 Read Operation
    6. 7.6 Register Maps
      1. 7.6.1 Slave Address
      2. 7.6.2 TPL0102 Register Map
      3. 7.6.3 IVRA (Initial Value Register for Potentiometer A)
      4. 7.6.4 WRA (Wiper Resistance Register for Potentiometer A)
      5. 7.6.5 IVRB (Initial Value Register for Potentiometer B)
      6. 7.6.6 WRB (Wiper Resistance Register for Potentiometer B)
      7. 7.6.7 ACR (Access Control Register)
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Adjustable Gain Non-Inverting Amplifier
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Digital to Analog Converter (DAC)
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
      3. 8.2.3 Variable Current Sink
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
          1. 8.2.3.2.1 Compensation Components
        3. 8.2.3.3 Application Curves
  9. Power Supply Recommendations
    1. 9.1 Power Sequence
    2. 9.2 Wiper Position Upon Power Up
    3. 9.3 Dual-Supply vs Single-Supply
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 社区资源
    2. 11.2 商标
    3. 11.3 静电放电警告
    4. 11.4 Glossary
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Detailed Description

7.1 Overview

The TPL0102 has two linear-taper digital potentiometers with 256 wiper positions and an end-to-end resistance of 100 kΩ. Each potentiometer can be used as a three-terminal potentiometer or as a two-terminal rheostat. The two potentiometers can both be used in Voltage Divider Mode, Rheostat Mode, or Shutdown Mode at the same time, or any combination of those modes. For example, potentiometer A can be used in Voltage Divider Mode and potentiometer B can be used in Voltage Divider Mode, or potentiometer A can be used in Voltage Divider Mode and potentiometer B can be used in Rheostat Mode. The two potentiometers are functionally independent of one another.

The High (H) and Low (L) terminals of the TPL0102 are equivalent to the fixed terminals of a mechanical potentiometer. The H and L terminals do not have any polarity restrictions (H can be at a higher voltage than L, or L can be at a higher voltage than H). The position of the wiper (W) terminal is controlled by the value in the Wiper Resistance (WR) 8-bit register. When the WR register contains all zeroes (zero-scale), the wiper terminal is closest to its L terminal. As the value of the WR register increases from all zeroes to all ones (full-scale), the wiper moves monotonically from the position closest to L terminal to the position closest to the H terminal. At the same time, the resistance between W and L increases monotonically, whereas the resistance between W and H decreases monotonically.

The TPL0102 has non-volatile memory (EEPROM) which can be used to store the wiper position. When the device is powered down, the last value stored in the Initial Value Register (IVR) will be maintained in the non-volatile memory. When power is restored, the contents of the IVR are automatically recalled and loaded into the corresponding WR register to set the wipers . The internal registers of the TPL0102 can be accessed using the I2C interface. The factory-programmed default value for the IVR upon power up is 0x80h (1000 0000). The WR register can be written to directly without first writing to the IVR, depending upon the setting of the volatile memory (VOL) in the ACR (Access Control Register). If the WR register is written to directly without writing to the IVR as well, this results in the wiper position changing to a desired position, but the position will not be stored in memory and will not be reloaded upon powering up the device.

With one TPL0102, a variable resistor with 512 settings can be used since there are two potentiometers in one TPL0102. In order to achieve this, the two potentiometers should be in Rheostat Mode and wired so that terminal L of potentiometer B is tied to terminal W of potentiometer A. This will provide 512 settings between terminal L of potentiometer A and terminal W of potentiometer B.

7.2 Functional Block Diagram

TPL0102 fbd_LIS134.gif

7.3 Feature Description

The TPL0102 has two linear-taper digital potentiometers (DPOTs) with 256 wiper positions. Each potentiometer can be used as a three-terminal potentiometer or a two-terminal rheostat. The TPL0102-100 has an end-to-end resistance of 100 kΩ with a 20% end-to-end resistance tolerance. Non-volatile memory (EEPROM) can be used to store the wiper position allowing the wiper position to be stored even during power-off and automatically reinstated after power-on. The internal registers of the TPL0102 can be accessed using the I2C digital interface. The TPL0102 is available in a 14-pin MicroQFN (2.00 mm x 2.00 mm) and 14-pin TSSOP package.

7.4 Device Functional Modes

7.4.1 Shutdown Mode

The TPL0102 can be put in Shutdown Mode by executing the proper command in the ACR (Access Control Register). Please see the TPL0102 Register Map for more details. When active, this feature causes terminal H to become high impedance.

TPL0102 dfm_shutdown_m_slis134.gif Figure 18. Equivalent Circuit for Shutdown Mode

7.4.2 Voltage Divider Mode

The digital potentiometer generates a voltage divider when all three terminals are used. The voltage divider at wiper-to-H and wiper-to-L is proportional to the input voltage at H to L.

TPL0102 dfm_vt_mode_slis134.gif Figure 19. Equivalent Circuit for Voltage Divider Mode

For example, connecting terminal H to 5 V and terminal L to ground, the output voltage at terminal W can range from 0 V to 5 V. The general equation defining the output voltage at terminal W for any valid input voltage applied to terminal H and terminal L is

Equation 1. TPL0102 eq1_slis134.gif

The voltage difference between terminal H and terminal W can also be calculated

Equation 2. TPL0102 eq2_slis134.gif

where

  • D is the decimal value of the wiper code.

7.4.3 Rheostat Mode

The TPL0102 operates in rheostat mode when only two terminals are used as a variable resistor. The variable resistance can either be between terminal H and terminal W or between terminal L and terminal W.  The unused terminal can be left floating or it can be tied to terminal W. The nominal resistance between terminal H and terminal L is 100 kΩ and has 256 tap points accessed by the wiper terminal. The 8-bit volatile register value is used to determine one of the 256 possible wiper positions.

In rheostat mode, to set the resistance between terminal H and terminal W, the potentiometer can be configured in two possible ways.

TPL0102 dfm_rheostat_m1_slis134.gif Figure 20. Equivalent Circuit for Rheostat Mode with Terminal H to Terminal W Resistance

The general equation for determining the digitally programmed output resistance between Terminal H and Terminal W is:

Equation 3. TPL0102 eq3_slis134.gif

where

  • RTOT is the end-to-end resistance between terminal H and terminal L.
  • D is the decimal value of the wiper code.

Similarly, to set the resistance between terminal L and terminal W, the potentiometer can be configured in two possible ways.

TPL0102 dfm_rheostat_m2_slis134.gif Figure 21. Equivalent Circuit for Rheostat Mode with Terminal L to Terminal W Resistance

The general equation for determining the digitally programmed output resistance between terminal L and terminal W is

Equation 4. TPL0102 eq4_slis134.gif

where

  • RTOT is the end-to-end resistance between terminal H and terminal L.
  • D is the decimal value of the wiper code.

The following table shows the ideal values for DPOT with End-to End resistance of 100 kΩ. The absolute values of resistance can vary significantly but the Ratio (RWL/RHW) is extremely accurate.

The linearity values are "relative" linearity values (i.e. linearity after zero-scale and full-scale offset errors are removed). Please take this into account when expecting a certain absolute accuracy since some error will be introduced once you get close in magnitude to the offset errors.

Step Hex Binary RWL (kΩ) RHW (kΩ) RWL/RHW
0 (zero-scale) 0x00h 0000 0000 0.00 100.00 0.00
1 0x01h 0000 0001 0.39 99.61 0.00
2 0x02h 0000 0010 0.78 99.22 0.01
3 0x03h 0000 0011 1.17 98.83 0.01
4 0x04h 0000 0100 1.56 98.44 0.02
5 0x05h 0000 0101 1.95 98.05 0.02
6 0x06h 0000 0110 2.34 97.66 0.02
7 0x07h 0000 0111 2.73 97.27 0.03
8 0x08h 0000 1000 3.13 96.88 0.03
9 0x09h 0000 1001 3.52 96.48 0.04
10 0x0Ah 0000 1010 3.91 96.09 0.04
11 0x0Bh 0000 1011 4.30 95.70 0.04
12 0x0Ch 0000 1100 4.69 95.31 0.05
13 0x0Dh 0000 1101 5.08 94.92 0.05
14 0x0Eh 0000 1110 5.47 94.53 0.06
15 0x0Fh 0000 1111 5.86 94.14 0.06
16 0x10h 0001 0000 6.25 93.75 0.07
17 0x11h 0001 0001 6.64 93.36 0.07
18 0x12h 0001 0010 7.03 92.97 0.08
19 0x13h 0001 0011 7.42 92.58 0.08
20 0x14h 0001 0100 7.81 92.19 0.08
21 0x15h 0001 0101 8.20 91.80 0.09
22 0x16h 0001 0110 8.59 91.41 0.09
23 0x17h 0001 0111 8.98 91.02 0.10
24 0x18h 0001 1000 9.38 90.63 0.10
25 0x19h 0001 1001 9.77 90.23 0.11
26 0x1Ah 0001 1010 10.16 89.84 0.11
27 0x1Bh 0001 1011 10.55 89.45 0.12
28 0x1Ch 0001 1100 10.94 89.06 0.12
29 0x1Dh 0001 1101 11.33 88.67 0.13
30 0x1Eh 0001 1110 11.72 88.28 0.13
31 0x1Fh 0001 1111 12.11 87.89 0.14
32 0x20h 0010 0000 12.50 87.50 0.14
33 0x21h 0010 0001 12.89 87.11 0.15
34 0x22h 0010 0010 13.28 86.72 0.15
35 0x23h 0010 0011 13.67 86.33 0.16
36 0x24h 0010 0100 14.06 85.94 0.16
37 0x25h 0010 0101 14.45 85.55 0.17
38 0x26h 0010 0110 14.84 85.16 0.17
39 0x27h 0010 0111 15.23 84.77 0.18
40 0x28h 0010 1000 15.63 84.38 0.19
41 0x29h 0010 1001 16.02 83.98 0.19
42 0x2Ah 0010 1010 16.41 83.59 0.20
43 0x2Bh 0010 1011 16.80 83.20 0.20
44 0x2Ch 0010 1100 17.19 82.81 0.21
45 0x2Dh 0010 1101 17.58 82.42 0.21
46 0x2Eh 0010 1110 17.97 82.03 0.22
47 0x2Fh 0010 1111 18.36 81.64 0.22
48 0x30h 0011 0000 18.75 81.25 0.23
49 0x31h 0011 0001 19.14 80.86 0.24
50 0x32h 0011 0010 19.53 80.47 0.24
51 0x33h 0011 0011 19.92 80.08 0.25
52 0x34h 0011 0100 20.31 79.69 0.25
53 0x35h 0011 0101 20.70 79.30 0.26
54 0x36h 0011 0110 21.09 78.91 0.27
55 0x37h 0011 0111 21.48 78.52 0.27
56 0x38h 0011 1000 21.88 78.13 0.28
57 0x39h 0011 1001 22.27 77.73 0.29
58 0x3Ah 0011 1010 22.66 77.34 0.29
59 0x3Bh 0011 1011 23.05 76.95 0.30
60 0x3Ch 0011 1100 23.44 76.56 0.31
61 0x3Dh 0011 1101 23.83 76.17 0.31
62 0x3Eh 0011 1110 24.22 75.78 0.32
63 0x3Fh 0011 1111 24.61 75.39 0.33
64 0x40h 0100 0000 25.00 75.00 0.33
65 0x41h 0100 0001 25.39 74.61 0.34
66 0x42h 0100 0010 25.78 74.22 0.35
67 0x43h 0100 0011 26.17 73.83 0.35
68 0x44h 0100 0100 26.56 73.44 0.36
69 0x45h 0100 0101 26.95 73.05 0.37
70 0x46h 0100 0110 27.34 72.66 0.38
71 0x47h 0100 0111 27.73 72.27 0.38
72 0x48h 0100 1000 28.13 71.88 0.39
73 0x49h 0100 1001 28.52 71.48 0.40
74 0x4Ah 0100 1010 28.91 71.09 0.41
75 0x4Bh 0100 1011 29.30 70.70 0.41
76 0x4Ch 0100 1100 29.69 70.31 0.42
77 0x4Dh 0100 1101 30.08 69.92 0.43
78 0x4Eh 0100 1110 30.47 69.53 0.44
79 0x4Fh 0100 1111 30.86 69.14 0.45
80 0x50h 0101 0000 31.25 68.75 0.45
81 0x51h 0101 0001 31.64 68.36 0.46
82 0x52h 0101 0010 32.03 67.97 0.47
83 0x53h 0101 0011 32.42 67.58 0.48
84 0x54h 0101 0100 32.81 67.19 0.49
85 0x55h 0101 0101 33.20 66.80 0.50
86 0x56h 0101 0110 33.59 66.41 0.51
87 0x57h 0101 0111 33.98 66.02 0.51
88 0x58h 0101 1000 34.38 65.63 0.52
89 0x59h 0101 1001 34.77 65.23 0.53
90 0x5Ah 0101 1010 35.16 64.84 0.54
91 0x5Bh 0101 1011 35.55 64.45 0.55
92 0x5Ch 0101 1100 35.94 64.06 0.56
93 0x5Dh 0101 1101 36.33 63.67 0.57
94 0x5Eh 0101 1110 36.72 63.28 0.58
95 0x5Fh 0101 1111 37.11 62.89 0.59
96 0x60h 0110 0000 37.50 62.50 0.60
97 0x61h 0110 0001 37.89 62.11 0.61
98 0x62h 0110 0010 38.28 61.72 0.62
99 0x63h 0110 0011 38.67 61.33 0.63
100 0x64h 0110 0100 39.06 60.94 0.64
101 0x65h 0110 0101 39.45 60.55 0.65
102 0x66h 0110 0110 39.84 60.16 0.66
103 0x67h 0110 0111 40.23 59.77 0.67
104 0x68h 0110 1000 40.63 59.38 0.68
105 0x69h 0110 1001 41.02 58.98 0.70
106 0x6Ah 0110 1010 41.41 58.59 0.71
107 0x6Bh 0110 1011 41.80 58.20 0.72
108 0x6Ch 0110 1100 42.19 57.81 0.73
109 0x6Dh 0110 1101 42.58 57.42 0.74
110 0x6Eh 0110 1110 42.97 57.03 0.75
111 0x6Fh 0110 1111 43.36 56.64 0.77
112 0x70h 0111 0000 43.75 56.25 0.78
113 0x71h 0111 0001 44.14 55.86 0.79
114 0x72h 0111 0010 44.53 55.47 0.80
115 0x73h 0111 0011 44.92 55.08 0.82
116 0x74h 0111 0100 45.31 54.69 0.83
117 0x75h 0111 0101 45.70 54.30 0.84
118 0x76h 0111 0110 46.09 53.91 0.86
119 0x77h 0111 0111 46.48 53.52 0.87
120 0x78h 0111 1000 46.88 53.13 0.88
121 0x79h 0111 1001 47.27 52.73 0.90
122 0x7Ah 0111 1010 47.66 52.34 0.91
123 0x7Bh 0111 1011 48.05 51.95 0.92
124 0x7Ch 0111 1100 48.44 51.56 0.94
125 0x7Dh 0111 1101 48.83 51.17 0.95
126 0x7Eh 0111 1110 49.22 50.78 0.97
127 0x7Fh 0111 1111 49.61 50.39 0.98
128 0x80h 1000 0000 50.00 50.00 1.00
129 0x81h 1000 0001 50.39 49.61 1.02
130 0x82h 1000 0010 50.78 49.22 1.03
131 0x83h 1000 0011 51.17 48.83 1.05
132 0x84h 1000 0100 51.56 48.44 1.06
133 0x85h 1000 0101 51.95 48.05 1.08
134 0x86h 1000 0110 52.34 47.66 1.10
135 0x87h 1000 0111 52.73 47.27 1.12
136 0x88h 1000 1000 53.13 46.88 1.13
137 0x89h 1000 1001 53.52 46.48 1.15
138 0x8Ah 1000 1010 53.91 46.09 1.17
139 0x8Bh 1000 1011 54.30 45.70 1.19
140 0x8Ch 1000 1100 54.69 45.31 1.21
141 0x8Dh 1000 1101 55.08 44.92 1.23
142 0x8Eh 1000 1110 55.47 44.53 1.25
143 0x8Fh 1000 1111 55.86 44.14 1.27
144 0x90h 1001 0000 56.25 43.75 1.29
145 0x91h 1001 0001 56.64 43.36 1.31
146 0x92h 1001 0010 57.03 42.97 1.33
147 0x93h 1001 0011 57.42 42.58 1.35
148 0x94h 1001 0100 57.81 42.19 1.37
149 0x95h 1001 0101 58.20 41.80 1.39
150 0x96h 1001 0110 58.59 41.41 1.42
151 0x97h 1001 0111 58.98 41.02 1.44
152 0x98h 1001 1000 59.38 40.63 1.46
153 0x99h 1001 1001 59.77 40.23 1.49
154 0x9Ah 1001 1010 60.16 39.84 1.51
155 0x9Bh 1001 1011 60.55 39.45 1.53
156 0x9Ch 1001 1100 60.94 39.06 1.56
157 0x9Dh 1001 1101 61.33 38.67 1.59
158 0x9Eh 1001 1110 61.72 38.28 1.61
159 0x9Fh 1001 1111 62.11 37.89 1.64
160 0xA0h 1010 0000 62.50 37.50 1.67
161 0xA1h 1010 0001 62.89 37.11 1.69
162 0xA2h 1010 0010 63.28 36.72 1.72
163 0xA3h 1010 0011 63.67 36.33 1.75
164 0xA4h 1010 0100 64.06 35.94 1.78
165 0xA5h 1010 0101 64.45 35.55 1.81
166 0xA6h 1010 0110 64.84 35.16 1.84
167 0xA7h 1010 0111 65.23 34.77 1.88
168 0xA8h 1010 1000 65.63 34.38 1.91
169 0xA9h 1010 1001 66.02 33.98 1.94
170 0xAAh 1010 1010 66.41 33.59 1.98
171 0xABh 1010 1011 66.80 33.20 2.01
172 0xACh 1010 1100 67.19 32.81 2.05
173 0xADh 1010 1101 67.58 32.42 2.08
174 0xAEh 1010 1110 67.97 32.03 2.12
175 0xAFh 1010 1111 68.36 31.64 2.16
176 0xB0h 1011 0000 68.75 31.25 2.20
177 0xB1h 1011 0001 69.14 30.86 2.24
178 0xB2h 1011 0010 69.53 30.47 2.28
179 0xB3h 1011 0011 69.92 30.08 2.32
180 0xB4h 1011 0100 70.31 29.69 2.37
181 0xB5h 1011 0101 70.70 29.30 2.41
182 0xB6h 1011 0110 71.09 28.91 2.46
183 0xB7h 1011 0111 71.48 28.52 2.51
184 0xB8h 1011 1000 71.88 28.13 2.56
185 0xB9h 1011 1001 72.27 27.73 2.61
186 0xBAh 1011 1010 72.66 27.34 2.66
187 0xBBh 1011 1011 73.05 26.95 2.71
188 0xBCh 1011 1100 73.44 26.56 2.76
189 0xBDh 1011 1101 73.83 26.17 2.82
190 0xBEh 1011 1110 74.22 25.78 2.88
191 0xBFh 1011 1111 74.61 25.39 2.94
192 0xC0h 1100 0000 75.00 25.00 3.00
193 0xC1h 1100 0001 75.39 24.61 3.06
194 0xC2h 1100 0010 75.78 24.22 3.13
195 0xC3h 1100 0011 76.17 23.83 3.20
196 0xC4h 1100 0100 76.56 23.44 3.27
197 0xC5h 1100 0101 76.95 23.05 3.34
198 0xC6h 1100 0110 77.34 22.66 3.41
199 0xC7h 1100 0111 77.73 22.27 3.49
200 0xC8h 1100 1000 78.13 21.88 3.57
201 0xC9h 1100 1001 78.52 21.48 3.65
202 0xCAh 1100 1010 78.91 21.09 3.74
203 0xCBh 1100 1011 79.30 20.70 3.83
204 0xCCh 1100 1100 79.69 20.31 3.92
205 0xCDh 1100 1101 80.08 19.92 4.02
206 0xCEh 1100 1110 80.47 19.53 4.12
207 0xCFh 1100 1111 80.86 19.14 4.22
208 0xD0h 1101 0000 81.25 18.75 4.33
209 0xD1h 1101 0001 81.64 18.36 4.45
210 0xD2h 1101 0010 82.03 17.97 4.57
211 0xD3h 1101 0011 82.42 17.58 4.69
212 0xD4h 1101 0100 82.81 17.19 4.82
213 0xD5h 1101 0101 83.20 16.80 4.95
214 0xD6h 1101 0110 83.59 16.41 5.10
215 0xD7h 1101 0111 83.98 16.02 5.24
216 0xD8h 1101 1000 84.38 15.63 5.40
217 0xD9h 1101 1001 84.77 15.23 5.56
218 0xDAh 1101 1010 85.16 14.84 5.74
219 0xDBh 1101 1011 85.55 14.45 5.92
220 0xDCh 1101 1100 85.94 14.06 6.11
221 0xDDh 1101 1101 86.33 13.67 6.31
222 0xDEh 1101 1110 86.72 13.28 6.53
223 0xDFh 1101 1111 87.11 12.89 6.76
224 0xE0h 1110 0000 87.50 12.50 7.00
225 0xE1h 1110 0001 87.89 12.11 7.26
226 0xE2h 1110 0010 88.28 11.72 7.53
227 0xE3h 1110 0011 88.67 11.33 7.83
228 0xE4h 1110 0100 89.06 10.94 8.14
229 0xE5h 1110 0101 89.45 10.55 8.48
230 0xE6h 1110 0110 89.84 10.16 8.85
231 0xE7h 1110 0111 90.23 9.77 9.24
232 0xE8h 1110 1000 90.63 9.38 9.67
233 0xE9h 1110 1001 91.02 8.98 10.13
234 0xEAh 1110 1010 91.41 8.59 10.64
235 0xEBh 1110 1011 91.80 8.20 11.19
236 0xECh 1110 1100 92.19 7.81 11.80
237 0xEDh 1110 1101 92.58 7.42 12.47
238 0xEEh 1110 1110 92.97 7.03 13.22
239 0xEFh 1110 1111 93.36 6.64 14.06
240 0xF0h 1111 0000 93.75 6.25 15.00
241 0xF1h 1111 0001 94.14 5.86 16.07
242 0xF2h 1111 0010 94.53 5.47 17.29
243 0xF3h 1111 0011 94.92 5.08 18.69
244 0xF4h 1111 0100 95.31 4.69 20.33
245 0xF5h 1111 0101 95.70 4.30 22.27
246 0xF6h 1111 0110 96.09 3.91 24.60
247 0xF7h 1111 0111 96.48 3.52 27.44
248 0xF8h 1111 1000 96.88 3.13 31.00
249 0xF9h 1111 1001 97.27 2.73 35.57
250 0xFAh 1111 1010 97.66 2.34 41.67
251 0xFBh 1111 1011 98.05 1.95 50.20
252 0xFCh 1111 1100 98.44 1.56 63.00
253 0xFDh 1111 1101 98.83 1.17 84.33
254 0xFEh 1111 1110 99.22 0.78 127.00
255 (full-scale) 0xFFh 1111 1111 99.61 0.3 255.00

7.5 Programming with I2C

7.5.1 I2C General Operation

7.5.1.1 I2C Interface

The TPL0102 has a standard bidirectional I2C interface that is controlled by a microcontroller in order to configure the device and read the status of the device. Each device on the I2C bus, including this device, has a specific device address to differentiate between other devices that may be on the I2C bus. Configuration of the device is performed when the microcontroller addresses the device, then accesses the device’s internal Register Maps, which have unique register addresses. The TPL0102 has multiple registers where data is stored, written, or read. Please refer to the Register Map for more details.

The physical I2C interface consists of the serial clock (SCL) and serial data (SDA) lines. Both SDA and SCL lines must be connected to VDD through a pull-up resistor.  The size of the pull-up resistor is determined by the amount of capacitance on the I2C lines (for further details, please refer to the I2C Bus Pullup Resistor Calculation Application Report). Data transfer may be initiated only when the bus is not busy. For more detailed information on I2C, please refer to the Understanding the I2C Bus Application Report.

1. Suppose a master wants to send information to the TPL0102:

  • Master addresses TPL0102 (slave)
  • Master-transmitter sends data to TPL0102 (slave-receiver)
  • Master terminates the transfer.

2. If a master wants to receive information from TPL0102:

  • Master addresses TPL0102 (slave)
  • Master-receiver receives data from TPL0102 (slave-transmitter)
  • Master terminates the transfer.

The master generates the timing for the SCL.

7.5.1.2 START and STOP Conditions

I2C communication with this device is initiated by the master sending a START condition and terminated by the master sending a STOP condition. A high-to-low transition on the SDA line while the SCL is high defines a START condition. A low-to-high transition on the SDA line while the SCL is high defines a STOP condition.

TPL0102 I2C_START_STOP.gif Figure 22. Definition of START and STOP Conditions

7.5.1.3 Data Validity and Byte Formation

One data bit is transferred during each clock pulse of the SCL. One byte is comprised of eight bits on the SDA line. A byte may either be a device address, register address, or data written to or read from a slave.

Data is transferred Most Significant Bit (MSB) first. Any number of data bytes can be transferred from the master to slave between the START and STOP conditions. Data on the SDA line must remain stable during the high phase of the clock period, as changes in the data line when the SCL is high are interpreted as control commands (START or STOP).

TPL0102 I2C_Data_Byte.gif Figure 23. Definition of Byte Formation

7.5.1.4 Acknowledge (ACK) and Not Acknowledge (NACK)

Each byte is followed by one ACK bit from the receiver. The ACK bit allows the receiver to communicate to the transmitter that the byte was successfully received and another byte may be sent.

The transmitter must release the SDA line before the receiver can send the ACK bit. To send an ACK bit, the receiver shall pull down the SDA line during the low phase of the ACK/NACK-related clock period (period 9), so that the SDA line is stable low during the high phase of the ACK/NACK-related clock period. Setup and hold times must be taken into account.

TPL0102 i2c_ack_slis134.gif Figure 24. Example use of ACK

When the SDA line remains high during the ACK/NACK-related clock period, this is a NACK signal. There are several conditions that lead to the generation of a NACK:

  • The receiver is unable to receive or transmit because it is performing some real-time function and is not ready to start communication with the master.
  • During the transfer, the receiver gets data or commands that it does not understand.
  • During the transfer, the receiver cannot receive any more data bytes.
  • A master-receiver is done reading data and indicates this to the slave through a NACK.
TPL0102 i2c_nack_slis134.gif Figure 25. Example use of NACK

7.5.2 I2C Write and Read Operation

7.5.2.1 Auto Increment Function

Auto increment allows multiple bytes to be written to or read from consecutive registers without requiring the master to repeatedly send the device address and register address for each data byte. This is beneficial because auto increment substantially reduces the number of bytes transferred between the master and slave.

For the TPL0102, the registers will auto increment as long as the user continues to enter data. Auto increment will stop once the user is finished entering data bytes.

If there are more bytes to write or read after the last register address is written to or read from in the register map, auto increment will loop around to the register address at the beginning of the register map. For example, after the ACR (register address 0x10h) has been written to, if there are more bytes to be written, the register address will loop to the IVRA (register address 0x00h) at the beginning of the register map.

7.5.2.2 Write Operation

TPL0102 i2c_write_aai_slis134.gif Figure 26. Write Operation to One or Multiple Registers

7.5.2.3 Repeated Start

A repeated START condition may be used in place of a complete STOP condition follow by another START condition when performing a read function. The advantage of this is that the I2C bus does not become available after the stop and therefore prevents other devices from grabbing the bus between transfers.

7.5.2.4 Read Operation

TPL0102 i2c_read_single_slis134.gif Figure 27. Read Operation from One Register
TPL0102 i2c_read_aai_slis134.gif Figure 28. Read Operation from Multiple Registers

7.6 Register Maps

7.6.1 Slave Address

The device (slave) address can be configured by the user with 3 bits (A2, A1, and A0), allowing for 8 different possibilities for the device address. Please see the Figure 30 for an example.

TPL0102 i2c_device_address_1_slis134.gif Figure 29. Device Address in Context with START and ACK
Bit 7
(MSB)
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(LSB)
1 0 1 0 A2 A1 A0 R/W

Figure 30 shows an example of how to configure A2, A1 and A0 to give unique device addresses on the same I2C bus. When a bit is wired to Vcc, this gives that bit a value of 1. When a bit is wired to GND, this gives that bit a value of 0.

For example, Device 1 could be the TPL0102 on the I2C bus, which would have a 7 bit device address of 1010 110. There are some interfaces that will require the device address to be inputted in hex. In order to make the device address 8 bits for hex notation, a leading 0 is added to the left of the 7 bit device address. For Device 1, the 8 bit device address is 0101 0110 (0x56h). Device 2 would have a 7 bit device address of 1010 100, which with a leading 0 results in an 8 bit device address of 0101 0100 (0x54h). Device 3 would have a 7 bit device address of 1010 011, and with a leading 0 results in an 8 bit device address of 0101 0011 (0x53h).

TPL0102 i2c_device_address_2_slis134.gif Figure 30. Examples of Device Address Configuration on I2C Bus

7.6.2 TPL0102 Register Map

  • When writing the entire register map using auto increment, general purpose registers in the register address map need to be written with dummy bytes. The general purpose registers do not effect the outputs of the potentiometers.
  • As stated in the Overview, the VOL bit from the ACR (Access Control Register) provides two options for register accessibility. Either only volatile registers (WR) are accessible to change the wiper setting without storing the value in non-volatile memory or volatile registers (WR) and non-volatile registers (IVR) are accessible to change the wiper setting, which allows the value to be stored in non-volatile memory.
  • The respective non-volatile and volatile registers have the same register address, thus to write to both the volatile and non-volatile locations, only one register address needs to be entered and the VOL bit needs to be configured properly.
REGISTER ADDRESS (HEX) REGISTER ADDRESS (BINARY) NON-VOLATILE VOLATILE
0x00h 0000 0000 IVRA WRA
0x01h 0000 0001 IVRB WRB
0x02h 0000 0010 General purpose N/A
0x03h 0000 0011 General purpose N/A
0x04h 0000 0100 General purpose N/A
0x05h 0000 0101 General purpose N/A
0x06h 0000 0110 General purpose N/A
0x07h 0000 0111 General purpose N/A
0x08h 0000 1000 General purpose N/A
0x09h 0000 1001 General purpose N/A
0x0Ah 0000 1010 General purpose N/A
0x0Bh 0000 1011 General purpose N/A
0x0Ch 0000 1100 General purpose N/A
0x0Dh 0000 1101 General purpose N/A
0x0Eh 0000 1110 General purpose N/A
0x0Fh 0000 1111 Reserved
0x10h 0001 0000 N/A ACR

7.6.3 IVRA (Initial Value Register for Potentiometer A)

  • Non-volatile register to store wiper position for potentiometer A
  • Register will hold value even when device is powered down
NAME TYPE SIZE (BITS) REGISTER ADDRESS FACTORY PROGRAMMED VALUE
IVRA Non-volatile Write/Read 8 0x00h 0x80h

7.6.4 WRA (Wiper Resistance Register for Potentiometer A)

  • Volatile register to change wiper position for potentiometer A
  • IVRA loads value to WRA to determine wiper position
NAME TYPE SIZE (BITS) REGISTER ADDRESS VALUE UPON RESET
WRA Volatile Write/Read 8 0x00h IVRA value

7.6.5 IVRB (Initial Value Register for Potentiometer B)

  • Non-volatile register to store wiper position for potentiometer B
  • Register will hold value even when device is powered down
NAME TYPE SIZE (BITS) REGISTER ADDRESS FACTORY PROGRAMMED VALUE
IVRB Non-volatile Write/Read 8 0x01h 0x80h

7.6.6 WRB (Wiper Resistance Register for Potentiometer B)

  • Volatile register to change wiper position for potentiometer B
  • IVRB loads value to WRB to determine wiper position
NAME TYPE SIZE (BITS) REGISTER ADDRESS VALUE UPON RESET
WRB Volatile Write/Read 8 0x01h IVRB value

7.6.7 ACR (Access Control Register)

  • Volatile register to control register access, determine shut-down mode, and read non-volatile write operations
NAME TYPE SIZE (BITS) REGISTER ADDRESS VALUE UPON RESET
ACR Volatile Write/Read 8 0x10h 0x40h
NAME BIT ASSIGNMENT
ACR Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
VOL SHDN WIP 0 0 0 0 0
Reset (Default) Value 0 1 0 0 0 0 0 0
NAME TYPE SIZE (BITS) BIT VALUE DESCRIPTION
VOL Volatile Write/Read 1 0 Non-volatile registers (IVRA, IVRB) are accessible. Value written to IVR register is also written to the corresponding WR. If read operation is performed, only non-volatile register (IVRA, IVRB) values will be reported.
1 Only Volatile Registers (WR) are accessible. If read operation is performed, only volatile (WRA, WRB) values will be reported.
SHDN Volatile Write/Read 1 0 Shutdown mode is enabled. Both potentiometers are in shutdown mode. (see Shutdown Mode)
1 Shutdown mode is disabled
WIP Volatile Read 1 0 Non-volatile write operation is not in progress
1 Non-volatile write operation is in progress (it is not possible to write to the WR or ACR while WIP = 1)