SLIS149 June   2014 TPL0102-EP

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Functional Block Diagram
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Handling Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Operating Characteristics
    7. 7.7 Timing Requirements
    8. 7.8 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Potentiometer Pin Description
        1. 8.3.1.1 HA, HB, LA, LB
        2. 8.3.1.2 SDA, SCL
        3. 8.3.1.3 A0, A1, A2
      2. 8.3.2 Standard I2C Interface Details
      3. 8.3.3 Ideal Resistance Values
    4. 8.4 Device Functional Modes
    5. 8.5 Register Maps
      1. 8.5.1 Slave Address
      2. 8.5.2 TPL0102-EP Register Maps
      3. 8.5.3 IVRA (Initial Value Register for Potentiometer A)
      4. 8.5.4 WRA (Wiper Resistance Register for Potentiometer A)
      5. 8.5.5 IVRB (Initial Value Register for Potentiometer B)
      6. 8.5.6 WRB (Wiper Resistance Register for Potentiometer B)
      7. 8.5.7 ACR (Access Control Register)
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
  10. 10Layout
    1. 10.1 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Trademarks
    2. 11.2 Electrostatic Discharge Caution
    3. 11.3 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

8 Detailed Description

8.1 Overview

The TPL0102-EP is a two-channel, linear-taper digital potentiometer with 256 wiper positions. Each potentiometer can be used as a three-pin potentiometer or as a two-pin rheostat. The TPL0102-EP-100 has an end-to-end resistance of 100 kΩ.

The TPL0102-EP has non-volatile memory (EEPROM) which can be used to store the wiper position. When the device is powered down, the last value stored in the IVR register will be maintained in the non-volatile memory. When power is restored, the contents of the IVR register are recalled and loaded into the corresponding WR register to set the wipers to the initial position. The internal registers of the TPL0102-EP can be accessed using the I2C interface.

The position of the wiper pin is controlled by the value in the WR 8-bit register. When the WR contains all zeroes, the wiper pin W is closest to its L (low) pin. As the value of the WR increases from all zeroes to all ones (255 decimal), the wiper moves monotonically from the position closest to L to the position closest to H. At the same time, the resistance between W and L increases monotonically, whereas the resistance between W and H decreases monotonically.

8.2 Functional Block Diagram

fbd_LIS134.gif

8.3 Feature Description

Table 1. Summary of Features

Feature TPL0102-EP
Number of potentiometers 2
Digital interface I2C
Steps 256
Wiper memory Non-volatile
Taper Linear
End-to-end resistance 100 kΩ
End-to-end resistance tolerance 20%
Wiper resistance 25 Ω (typ)

8.3.1 Potentiometer Pin Description

8.3.1.1 HA, HB, LA, LB

The high (HA, HB) and low (LA, LB) pins of the TPL0102-EP are equivalent to the fixed pins of a mechanical potentiometer. The H and L pins do not have any polarity restrictions, i.e. H can be at a higher voltage than L, or L can be at a higher voltage than H. The WA and WB pins are the wipers and equivalent to the movable pin of a mechanical potentiometer. The position of the wiper is set using the WR register. With the WR register set to 255 decimal, the wiper is closest to the H pin, and with the WR register set to 0, the wiper is closest to the L pin.

8.3.1.2 SDA, SCL

SDA is a bi-directional serial data input/output pin for I2C communication. SDA is an open drain output and requires an external pull-up resistor.

SCL is the serial clock input for I2C communication. SCL requires an external pull-up resistor.

8.3.1.3 A0, A1, A2

These inputs are used to set the last three bits of the I2C address of the device. By using different values for A0, A1, A2, up to eight TPL0102-EP devices can be used on the same I2C bus.

i2c_int_LIS134.gifFigure 13. I2C Interface

The following is a sample sequence to set wipers of both potentiometers at mid-scale. Assume A0, A1, and A2 are 0 and device has just been powered up.

i2c_ex_LIS134.gifFigure 14. tI2C Interface Example

8.3.2 Standard I2C Interface Details

The bidirectional I2C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to a positive supply via a pullup resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

I2C communication with this device is initiated by the master sending a start condition, a high-to-low transition on the SDA input/output while the SCL input is high (see Figure 15). After the start condition, the device address byte is sent, MSB first, including the data direction bit (R/W). This device does not respond to the general call address. After receiving the valid address byte, this device responds with an ACK, a low on the SDA input/output during the high of the ACK-related clock pulse

time_def_LIS134.gifFigure 15. Definition of Start and Stop Conditions

The data byte follows the address ACK. The R/W bit is kept low for transfer from the master to the slave. The data byte is followed by an ACK sent from this device. Data are output only if complete bytes are received and acknowledged. The output data is valid at time (tpv) after the low-to-high transition of SCL, during the clock cycle for the ACK. On the I2C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high pulse of the clock period, as changes in the data line at this time are interpreted as control commands (start or stop) (see Figure 16).

time_bit_LIS134.gifFigure 16. Bit Transfer

A stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the master (see Figure 15).

The number of data bytes transferred between the start and the stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before the receiver can send an ACK bit.

A slave receiver that is addressed must generate an ACK after the reception of each byte. The device that acknowledges has to pull down the SDA line during the ACK clock pulse so that the SDA line is stable low during the high pulse of the ACK-related clock period (see Figure 17). Setup and hold times must be taken into account.

time_ack_LIS134.gifFigure 17. Acknowledgment on the I2C Bus

8.3.3 Ideal Resistance Values

resval_fig.gifFigure 18.

Table 2 shows the ideal values for DPOT with end-to-end resistance of 100 kΩ. The absolute values of resistance can vary significantly, but the ratio (RWL / RHW) is extremely accurate.

Table 2.

Step Binary RWL (kΩ) RHW (kΩ) RWL / RHW
0 0 0.00 100.00 0.00
1 1 0.39 99.61 0.00
2 10 0.78 99.22 0.01
3 11 1.17 98.83 0.01
4 100 1.56 98.44 0.02
5 101 1.95 98.05 0.02
6 110 2.34 97.66 0.02
7 111 2.73 97.27 0.03
8 1000 3.13 96.88 0.03
9 1001 3.52 96.48 0.04
10 1010 3.91 96.09 0.04
11 1011 4.30 95.70 0.04
12 1100 4.69 95.31 0.05
13 1101 5.08 94.92 0.05
14 1110 5.47 94.53 0.06
15 1111 5.86 94.14 0.06
16 10000 6.25 93.75 0.07
17 10001 6.64 93.36 0.07
18 10010 7.03 92.97 0.08
19 10011 7.42 92.58 0.08
20 10100 7.81 92.19 0.08
21 10101 8.20 91.80 0.09
22 10110 8.59 91.41 0.09
23 10111 8.98 91.02 0.10
24 11000 9.38 90.63 0.10
25 11001 9.77 90.23 0.11
26 11010 10.16 89.84 0.11
27 11011 10.55 89.45 0.12
28 11100 10.94 89.06 0.12
29 11101 11.33 88.67 0.13
30 11110 11.72 88.28 0.13
31 11111 12.11 87.89 0.14
32 100000 12.50 87.50 0.14
33 100001 12.89 87.11 0.15
34 100010 13.28 86.72 0.15
35 100011 13.67 86.33 0.16
36 100100 14.06 85.94 0.16
37 100101 14.45 85.55 0.17
38 100110 14.84 85.16 0.17
39 100111 15.23 84.77 0.18
40 101000 15.63 84.38 0.19
41 101001 16.02 83.98 0.19
42 101010 16.41 83.59 0.20
43 101011 16.80 83.20 0.20
44 101100 17.19 82.81 0.21
45 101101 17.58 82.42 0.21
46 101110 17.97 82.03 0.22
47 101111 18.36 81.64 0.22
48 110000 18.75 81.25 0.23
49 110001 19.14 80.86 0.24
50 110010 19.53 80.47 0.24
51 110011 19.92 80.08 0.25
52 110100 20.31 79.69 0.25
53 110101 20.70 79.30 0.26
54 110110 21.09 78.91 0.27
55 110111 21.48 78.52 0.27
56 111000 21.88 78.13 0.28
57 111001 22.27 77.73 0.29
58 111010 22.66 77.34 0.29
59 111011 23.05 76.95 0.30
60 111100 23.44 76.56 0.31
61 111101 23.83 76.17 0.31
62 111110 24.22 75.78 0.32
63 111111 24.61 75.39 0.33
64 1000000 25.00 75.00 0.33
65 1000001 25.39 74.61 0.34
66 1000010 25.78 74.22 0.35
67 1000011 26.17 73.83 0.35
68 1000100 26.56 73.44 0.36
69 1000101 26.95 73.05 0.37
70 1000110 27.34 72.66 0.38
71 1000111 27.73 72.27 0.38
72 1001000 28.13 71.88 0.39
73 1001001 28.52 71.48 0.40
74 1001010 28.91 71.09 0.41
75 1001011 29.30 70.70 0.41
76 1001100 29.69 70.31 0.42
77 1001101 30.08 69.92 0.43
78 1001110 30.47 69.53 0.44
79 1001111 30.86 69.14 0.45
80 1010000 31.25 68.75 0.45
81 1010001 31.64 68.36 0.46
82 1010010 32.03 67.97 0.47
83 1010011 32.42 67.58 0.48
84 1010100 32.81 67.19 0.49
85 1010101 33.20 66.80 0.50
86 1010110 33.59 66.41 0.51
87 1010111 33.98 66.02 0.51
88 1011000 34.38 65.63 0.52
89 1011001 34.77 65.23 0.53
90 1011010 35.16 64.84 0.54
91 1011011 35.55 64.45 0.55
92 1011100 35.94 64.06 0.56
93 1011101 36.33 63.67 0.57
94 1011110 36.72 63.28 0.58
95 1011111 37.11 62.89 0.59
96 1100000 37.50 62.50 0.60
97 1100001 37.89 62.11 0.61
98 1100010 38.28 61.72 0.62
99 1100011 38.67 61.33 0.63
100 1100100 39.06 60.94 0.64
101 1100101 39.45 60.55 0.65
102 1100110 39.84 60.16 0.66
103 1100111 40.23 59.77 0.67
104 1101000 40.63 59.38 0.68
105 1101001 41.02 58.98 0.70
106 1101010 41.41 58.59 0.71
107 1101011 41.80 58.20 0.72
108 1101100 42.19 57.81 0.73
109 1101101 42.58 57.42 0.74
110 1101110 42.97 57.03 0.75
111 1101111 43.36 56.64 0.77
112 1110000 43.75 56.25 0.78
113 1110001 44.14 55.86 0.79
114 1110010 44.53 55.47 0.80
115 1110011 44.92 55.08 0.82
116 1110100 45.31 54.69 0.83
117 1110101 45.70 54.30 0.84
118 1110110 46.09 53.91 0.86
119 1110111 46.48 53.52 0.87
120 1111000 46.88 53.13 0.88
121 1111001 47.27 52.73 0.90
122 1111010 47.66 52.34 0.91
123 1111011 48.05 51.95 0.92
124 1111100 48.44 51.56 0.94
125 1111101 48.83 51.17 0.95
126 1111110 49.22 50.78 0.97
127 1111111 49.61 50.39 0.98
128 10000000 50.00 50.00 1.00
129 10000001 50.39 49.61 1.02
130 10000010 50.78 49.22 1.03
131 10000011 51.17 48.83 1.05
132 10000100 51.56 48.44 1.06
133 10000101 51.95 48.05 1.08
134 10000110 52.34 47.66 1.10
135 10000111 52.73 47.27 1.12
136 10001000 53.13 46.88 1.13
137 10001001 53.52 46.48 1.15
138 10001010 53.91 46.09 1.17
139 10001011 54.30 45.70 1.19
140 10001100 54.69 45.31 1.21
141 10001101 55.08 44.92 1.23
142 10001110 55.47 44.53 1.25
143 10001111 55.86 44.14 1.27
144 10010000 56.25 43.75 1.29
145 10010001 56.64 43.36 1.31
146 10010010 57.03 42.97 1.33
147 10010011 57.42 42.58 1.35
148 10010100 57.81 42.19 1.37
149 10010101 58.20 41.80 1.39
150 10010110 58.59 41.41 1.42
151 10010111 58.98 41.02 1.44
152 10011000 59.38 40.63 1.46
153 10011001 59.77 40.23 1.49
154 10011010 60.16 39.84 1.51
155 10011011 60.55 39.45 1.53
156 10011100 60.94 39.06 1.56
157 10011101 61.33 38.67 1.59
158 10011110 61.72 38.28 1.61
159 10011111 62.11 37.89 1.64
160 10100000 62.50 37.50 1.67
161 10100001 62.89 37.11 1.69
162 10100010 63.28 36.72 1.72
163 10100011 63.67 36.33 1.75
164 10100100 64.06 35.94 1.78
165 10100101 64.45 35.55 1.81
166 10100110 64.84 35.16 1.84
167 10100111 65.23 34.77 1.88
168 10101000 65.63 34.38 1.91
169 10101001 66.02 33.98 1.94
170 10101010 66.41 33.59 1.98
171 10101011 66.80 33.20 2.01
172 10101100 67.19 32.81 2.05
173 10101101 67.58 32.42 2.08
174 10101110 67.97 32.03 2.12
175 10101111 68.36 31.64 2.16
176 10110000 68.75 31.25 2.20
177 10110001 69.14 30.86 2.24
178 10110010 69.53 30.47 2.28
179 10110011 69.92 30.08 2.32
180 10110100 70.31 29.69 2.37
181 10110101 70.70 29.30 2.41
182 10110110 71.09 28.91 2.46
183 10110111 71.48 28.52 2.51
184 10111000 71.88 28.13 2.56
185 10111001 72.27 27.73 2.61
186 10111010 72.66 27.34 2.66
187 10111011 73.05 26.95 2.71
188 10111100 73.44 26.56 2.76
189 10111101 73.83 26.17 2.82
190 10111110 74.22 25.78 2.88
191 10111111 74.61 25.39 2.94
192 11000000 75.00 25.00 3.00
193 11000001 75.39 24.61 3.06
194 11000010 75.78 24.22 3.13
195 11000011 76.17 23.83 3.20
196 11000100 76.56 23.44 3.27
197 11000101 76.95 23.05 3.34
198 11000110 77.34 22.66 3.41
199 11000111 77.73 22.27 3.49
200 11001000 78.13 21.88 3.57
201 11001001 78.52 21.48 3.65
202 11001010 78.91 21.09 3.74
203 11001011 79.30 20.70 3.83
204 11001100 79.69 20.31 3.92
205 11001101 80.08 19.92 4.02
206 11001110 80.47 19.53 4.12
207 11001111 80.86 19.14 4.22
208 11010000 81.25 18.75 4.33
209 11010001 81.64 18.36 4.45
210 11010010 82.03 17.97 4.57
211 11010011 82.42 17.58 4.69
212 11010100 82.81 17.19 4.82
213 11010101 83.20 16.80 4.95
214 11010110 83.59 16.41 5.10
215 11010111 83.98 16.02 5.24
216 11011000 84.38 15.63 5.40
217 11011001 84.77 15.23 5.56
218 11011010 85.16 14.84 5.74
219 11011011 85.55 14.45 5.92
220 11011100 85.94 14.06 6.11
221 11011101 86.33 13.67 6.31
222 11011110 86.72 13.28 6.53
223 11011111 87.11 12.89 6.76
224 11100000 87.50 12.50 7.00
225 11100001 87.89 12.11 7.26
226 11100010 88.28 11.72 7.53
227 11100011 88.67 11.33 7.83
228 11100100 89.06 10.94 8.14
229 11100101 89.45 10.55 8.48
230 11100110 89.84 10.16 8.85
231 11100111 90.23 9.77 9.24
232 11101000 90.63 9.38 9.67
233 11101001 91.02 8.98 10.13
234 11101010 91.41 8.59 10.64
235 11101011 91.80 8.20 11.19
236 11101100 92.19 7.81 11.80
237 11101101 92.58 7.42 12.47
238 11101110 92.97 7.03 13.22
239 11101111 93.36 6.64 14.06
240 11110000 93.75 6.25 15.00
241 11110001 94.14 5.86 16.07
242 11110010 94.53 5.47 17.29
243 11110011 94.92 5.08 18.69
244 11110100 95.31 4.69 20.33
245 11110101 95.70 4.30 22.27
246 11110110 96.09 3.91 24.60
247 11110111 96.48 3.52 27.44
248 11111000 96.88 3.13 31.00
249 11111001 97.27 2.73 35.57
250 11111010 97.66 2.34 41.67
251 11111011 98.05 1.95 50.20
252 11111100 98.44 1.56 63.00
253 11111101 98.83 1.17 84.33
254 11111110 99.22 0.78 127.00
255 11111111 99.61 0.3 255.00

8.4 Device Functional Modes

DPOT_con_lis135.gifFigure 19. Digital Potentiometer Configurations

8.5 Register Maps

8.5.1 Slave Address

Bit 7
(MSB)
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 2 Bit 0
(LSB)
1 0 1 0 A2 A1 A0 R/W

8.5.2 TPL0102-EP Register Maps

REGISTER ADDRESS (HEX) NON-VOLATILE VOLATILE
0 IVRA WRA
1 IVRB WRB
2 General purpose N/A
3 General purpose N/A
4 General purpose N/A
5 General purpose N/A
6 General purpose N/A
7 General purpose N/A
8 General purpose N/A
9 General purpose N/A
A General purpose N/A
B General purpose N/A
C General purpose N/A
E General purpose N/A
D General purpose N/A
F Reserved
10 N/A ACR

8.5.3 IVRA (Initial Value Register for Potentiometer A)

  • Register address: 00H
  • Factory programmed value: 80H
  • Type: non-volatile write/read
NAME SIZE (BITS) DESCRIPTION
IVRA 8 Non-volatile register to store wiper position for potentiometer A

8.5.4 WRA (Wiper Resistance Register for Potentiometer A)

  • Register address: 00H
  • Reset value: same as IVRA
  • Type: volatile write/read
NAME SIZE (BITS) DESCRIPTION
WRA 8 Volatile register to change wiper position for potentiometer A

8.5.5 IVRB (Initial Value Register for Potentiometer B)

  • Register address: 01H
  • Factory programmed value: 80H
  • Type: non-volatile write/read
NAME SIZE (BITS) DESCRIPTION
IVRB 8 Non-volatile register to store wiper position for potentiometer B

8.5.6 WRB (Wiper Resistance Register for Potentiometer B)

  • Register address: 01H
  • Reset value: same as IVRB
  • Type: volatile write/read
NAME SIZE (BITS) DESCRIPTION
WRB 8 Volatile register to change wiper position for potentiometer B

8.5.7 ACR (Access Control Register)

  • Register address: 00H
  • Reset value: 40H
  • Type: non-volatile write/read
NAME SIZE (BITS) DESCRIPTION
IVRA 8 Non-volatile register to store wiper position for potentiometer A
ACR 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
VOL SHDN WIP 0 0 0 0 0
Default Value 0 1 0 0 0 0 0 0
NAME SIZE (BITS) DESCRIPTION
VOL 1 0: Non-volatile registers (IVRA, IVRB) are accessible. Value written to IVRi register is also written to the corresponding WRi.
1: Only volatile registers (WRi) are accessible.
SHDN 1 0: Shut-down mode is enabled. Potentiometers are in shut-down mode.
(see Figure 20)
1: Shut-down mode is disabled
WIP (read-only bit) 1 0: Non-volatile write operation is not in progress
1: Non-volatile write operation is in progress (it is not possible to write to the WRi or ACR while WIP = 1)
pot_shdn_LIS134.gifFigure 20. Potentiometer in Shut-Down Mode