Place the sense resistor (RSNS) close to the TPS12000-Q1 and then connect RSNS using the Kelvin techniques. Refer to Choosing the Right Sense Resistor Layout for more information on the Kelvin techniques.
For VDS based Current Sensing, follow the same kevlin techniques across the MOSFET.
Choose a 0.1 µF or higher value ceramic decoupling capacitor between VS terminal and GND for all the applications. Consider adding RC network at the supply pin (VS) of the controller to improve decoupling against the power line disturbances.
Make the high-current path from the board input to the load, and the return path, parallel and close to each other to minimize loop inductance.
Place the external MOSFETs close to the controller GATE drive pins (PU/PD) such that the GATE of the MOSFETs are close to the controller GATE drive pins and forms a shorter GATE loop. Consider adding a place holder for a resistor in series with the Gate of each external MOSFET to damp high frequency oscillations if need arises.
Place a TVS diode at the input to clamp the voltage transients during hot-plug and fast turn-off events.
Place the external boot-strap capacitor close to BST and SRC pins to form very short loop.
Connect the ground connections for the various components around the TPS12000-Q1 directly to each other, and to the TPS12000-Q1 GND, and then connected to the system ground at one point. Do not connect the various component grounds to each other through the high current ground line.