ZHCSPB6D July 2022 – April 2024 TPS1211-Q1
PRODUCTION DATA
In high-current applications where several FETs are connected in parallel, the gate slew rate control for the main FETs is not recommended due to unequal distribution of inrush currents among the FETs. This action makes FET selection complex and results in over sizing of the FETs.
The TPS12111-Q1 integrates precharge gate driver (G) with a dedicated control input (INP_G). This feature can be used to drive a separate FET that can be used to precharge the capacitive load. Figure 8-7 shows the precharge FET implementation for capacitive load charging using TPS12111-Q1. An external capacitor Cg reduces the gate turn-ON slew rate and controls the inrush current.
During power up with EN/UVLO high and CBST voltage above V(BST_UVLOR) threshold, INP and INP_G controls are active. For the precharge functionality, drive INP low to keep the main FETs OFF and drive INP_G high. G output gets pulled up to BST with I(G). Use Equation 5 to calculate the required Cg value.
Where,
I(G) is 100 µA (typical),
Use Equation 2 to calculate the IINRUSH.
A series resistor Rg must be used in conjunction with Cg to limit the discharge current from Cg during turn-off . The recommended value for Rg is between 220 Ω to 470 Ω. After the output capacitor is charged, turn OFF the precharge FET by driving INP_G low. G gets pulled low to SRC with an internal 135-mA pulldown switch. The main FETs can be turned ON by driving INP high.Figure 8-8 shows other system design approaches to charge large output capacitors in high current applications. The designs involve an additional power resistor in series in series with precharge FET. The back-to-back FET topology shown is typically used in bi-directional power control applications like battery management systems.